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EXECUTIVE SUMMARY 

      In the vicinity of weaving areas, freeway congestion is nearly unavoidable due to 

their negative effects on the continuous freeway mainline flow. The adverse impacts 

include increased collision risks, extended travel time, and excessive emissions and fuel 

consumption. Dynamic Speed Harmonization (DSH), which is also known as Variable 

Speed Limit (VSL), has the potential to dampen traffic oscillation during congestion. 

However, the effectiveness of this strategy is typically limited by the low compliance rates 

of drivers and potential delays in information transmission and dissemination, and that 

control strategies can only affect a small area. Fortunately, new opportunities are emerging 

with the development of Connected and Automated Vehicles (CAVs) that can completely 

comply with the control system. CAVs can greatly help complement the intelligent 

transportation systems to enhance a variety of Measures of Effectiveness (MOEs), such as 

safety, mobility, and environmental sustainability.  

 

     The objective of this study is to investigate the effects of DSH in mixed traffic 

flow involving Human-Driven Vehicles (HDVs) and CAVs on the freeway. A 

safety-oriented DSH strategy based on Deep Reinforcement Learning (DRL) is developed 

to better understand how CAVs can improve operational performance. A holistic 

performance evaluation is conducted to quantify the impacts under different Market 

Penetration Rates (MPRs) of CAVs in multiple simulated scenarios. The mixed traffic flow 

integrated with DSH highlights the synergies across different metrics. The results reveal 

that for the recurrent congestion, the proposed method can enhance mobility and achieve 

co-benefits with safety, and sustainability could be improved under higher MPRs. 

Spatiotemporal features of bottleneck speed demonstrate that DSH powered by CAVs can 

smooth the speed variations for partial areas. Sensitivity analysis of headways indicates 

that high-level CAVs can further improve performance. For the nonrecurrent congestion, 

the DSH can further improve safety and enhance mobility with increasing MPRs. While 

special events may exacerbate congestion, their impact can be mitigated to some extent 

through DSH. Spatiotemporal patterns of speed variations demonstrate that the DRL 

controller has the capability to dampen oscillations. A series of numerical experiments also 

indicate the adaptability of the agent under adverse weather scenarios, and the differences 

of surrogate safety measurements in response to various parametric thresholds. Moreover, 

a Multi-Agent Dynamic Speed Harmonization (MADSH) system prevents the proposed 

strategy from getting stuck in local optimization. This study provides essential insights to 

foster a deeper understanding of the transformative potential of the proposed technique in 

promoting intelligent transportation systems. 
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Chapter 1. Introduction 

1.1 Problem Statement  

When the design capacity of a bottleneck is exceeded by the traffic demand, vehicles 

coming from the upstream will queue up and traffic congestion will be generated in the 

downstream bottleneck area (Ghiasi et al., 2019). In this circumstance, mainline traffic flow will 

become unstable and stop-and-go phenomena may occur, which could lead to dramatic speed 

oscillation on the freeway segment. During this process, any slight driving behavior change 

made by even a single driver may produce a distinct change to the current traffic condition. This 

change is known as a ‘shock wave’, which propagates upstream and may cause a capacity drop 

and speed breakdown (Vrbanić et al., 2021). 

 

Constructing additional road infrastructure is one way to address the aforementioned 

issues. However, it is not always a practical solution since increased capacity will evoke induced 

traffic demand and result in an undesirable cycle. Another way to alleviate congestion is utilizing 

the active traffic management strategy. Two most commonly used traffic control strategies are 

speed harmonization (also known as Variable Speed Limit (VSL)) and ramp metering. These 

solutions can better leverage the current roadway resource compared to building more 

infrastructure.  

 

This research focuses on freeway mainline management, in which the general approach is 

to use speed harmonization to reduce spatiotemporal variations (Ma et al., 2016). The primary 

goal of this technique was also used to improve safety in work zones during inclement weather 

(Lu et al., 2010). Given that it could enhance headway and reduce speed oscillation (Ha et al., 

2003), it would decrease the frequency and severity of crashes (Smulders, 1990). It can also 

smooth traffic flow to lessen lane-changing maneuvers which are risky in congestion. Dynamic 

Speed Harmonization (DSH) strategy can be implemented based on current traffic states by 

adjusting speed limits that are displayed on Variable Message Signs (VMS) for all lanes 

(Papageorgiou et al., 2008). Leveraging speed rather than volume is justified since it is easier to 

detect. Figure 1 demonstrates how DSH works. The downstream detectors collect the traffic 

parameters of the weaving area and send the information to the VSL controller. The controller 

then uses predefined strategies to optimize the speed limit of the control section, and the VMS 

will display new speed limits for the upstream traffic. 
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      However, there are a series of problems related to the conventional strategy. Firstly, the 

effectiveness of DSH is highly associated with the compliance rates of drivers and even fails due 

to unexpected human behaviors. Additionally, there may be delays in the collection of 

information, and it can only affect a small area. Fortunately, the emerging technology such as 

Connected and Automated Vehicles (CAVs) powered by DSH bring new opportunities to solve 

these problems through Vehicle-to-Everything (V2X) technology (Tajalli and Hajbabaie. 2018; 

Talebpour et al., 2013; Wang et al. 2016). Another limitation in previous studies is the 

requirement to continuously tune the dynamic traffic parameters in the fundamental diagram 

(Kušić et al. 2020). This can be overcome by Reinforcement Learning (RL) methods since it can 

learn and interact with various traffic conditions without exhibiting explicit traffic dynamics. 

Most importantly, it is unnecessary to set the same speed limit across all lanes (Wu et al. 2020). 

As is shown in Figure 1, when two different traffic flows (red lines) interfere with each other in 

the right two lanes in the weaving area, the left overtaking lane is actually not affected. 

Implementing a homogeneous speed limit may degrade the operational efficiency of the 

roadway. 

       

  When assessing the effectiveness of CAVs application, safety, mobility, and 

environmental sustainability are often the core elements. Several performance indicators can be 

used to quantify these Measures of Effectiveness (MOEs), such as the number of emergency 

braking, collision probability (Fang et al. 2015), and speed variations (Hegyi et al. 2002) for 

safety issues; Total Travel Time (TTT) (Alessandri et al. 1999), and time delay for mobility 

issues; fuel consumption and emission (Barth and Boriboonsomsin 2009; Vahidi and Sciarretta 

2018) for sustainability issues. The majority of studies focused on one or two MOEs. While Tian 

et al. (2018) indicated that safety-oriented considerations can be included in mobility-based 

maneuvers as well to achieve sustainability, and co-benefits or trade-offs between them can be 

explored. 

 

To investigate the operational performance of DSH in CAV environment, a holistic 

evaluation approach should be formulated. Besides, it is still in the initial stage of the 

Figure 1. The Mechanism of DSH on the Freeway 
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development of the vehicle-road synergy system, and CAVs will coexist with Human-Driven 

Vehicles (HDVs) for a long time. It is necessary to implement an effective strategy to control 

mixed flows under different Market Penetration Rates (MPRs) of CAVs in various scenarios. 

Establishing a simulation-based test environment also contributes to exploring the potential 

interactions existed in multiple MOEs. 

 

1.2 Study Objectives 

The main goal of this research is to investigate the effects of coordinated speed control in 

mixed traffic flow involving HDVs and CAVs on the freeway. The proposed work in this project 

is intended to complete the following objectives: 

 

(1) To conduct a comprehensive review of the state-of-the-art and state-of-the-practice on 

DSH techniques, CAV technologies, DL-based traffic prediction models, DRL-based 

control methods, and their impacts on the freeway. 

 

(2) To develop a DSH strategy based on DRL and to better understand how CAVs can improve 

operational performance.  

 

(3) To evaluate and quantify the impact on mobility, safety, and sustainability, a 

comprehensive performance evaluation framework is formulated. A series of numerical 

experiments are conducted under different MPRs through various simulated scenarios.  

 

(4) To explore the potential interactions between MOEs in mixed traffic flow. 

 

1.3 Expected Contributions 

This research aims to investigate state-of-the-art dynamic speed control strategies in 

mixed traffic flow that contains HDVs and CAVs on the freeway. The outcomes from this project 

are expected as follows: 

 

(1) A comprehensive review of dynamic speed limit control is conducted. 

 

(2) A DRL-based dynamic speed limit strategy is developed to control the vehicles on the 

congested freeway, and a MADSH system is further developed to prevent getting stuck in 

local optimization. 

 

(3) A microscopic simulation environment is established for mixed traffic flows to evaluate 

the performance under various scenarios with different MPRs. 
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(4) A holistic performance framework is established by a variety of indicators to explore the 

co-benefits and trade-offs between MOEs. 

 

(5) Sensitivity analysis under multiple traffic scenarios is conducted to verify the adaptation 

of the model. 

1.4 Report Overview 

In this chapter, the motivation of the research has been explained, followed by the study 

objectives and expected outcomes. 

 

Chapter 2 summarizes a comprehensive literature review of the classical DSH Techniques 

for HDVs and CAVs, respectively. Previous methods that were conducted to implement DSH are 

classified into two categories: reactive and proactive methods. Considering the requirement to 

predict traffic patterns in a proactive approach, an overview of traffic prediction methods for 

intelligent vehicles is also summarized. Moreover, DSH based on state-of-art reinforcement 

learning technologies is also introduced. 

 

Chapter 3 develops a single-agent DRL-based DSH strategy on the freeway recurrent 

bottleneck. In order to reduce the complexity and meet the time computation requirements, 

Intelligent Driver Model (IDM) is used in the DRL framework to model the mixed traffic flow. 

Meanwhile, CAVs are introduced to assess the effects of DSH in mixed traffic flow. A holistic 

performance evaluation is conducted to quantify the performance under different MPRs of CAVs 

in multiple simulated scenarios. 

 

Chapter 4 employs the aforementioned DSH strategy at the nonrecurrent bottleneck 

including incidents on the freeway. To highlight the capabilities of DSH in safety improvements, 

a safety-oriented measurement is utilized, and comparative experiments are performed in a more 

indexed environment. A series of sensitivity analyses are conducted under different traffic 

demands, which include MPRs of CAVs, and time-to-collision thresholds. 

 

Chapter 5 conducts an extension of the previous single-agent strategy. A distributed 

multi-agent DRL method is proposed when the central controller breaks down. A lane-based 

strategy is developed to verify the feasibility of setting differential speed limits for each lane. 

Moreover, the adaptation of the learning-based models is tested in the case of new scenarios and 

asymmetry driving behaviors. 

 

Chapter 6 concludes the report by summarizing the proposed models and research results. 

Suggestions for future research directions are also provided.  
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Chapter 2. Literature Review 

2.1 Introduction 

   Due to the requirement of specific infrastructure and facilities for DSH systems, only a 

few institutions have conducted field tests. Many studies relied on the simulation-based approach, 

which can be classified into reactive and proactive methods. Reactive methods activate the VSL 

controller after congestion is detected (Malikopoulos et al., 2018). It is an offline algorithm based 

on the classical feedback control theory and can be used in stationary traffic. However, there is 

often a delay to manage the congestion, and fundamental diagrams are required to adjust the 

controller settings. Proactive methods are proposed to resolve this problem by anticipating future 

patterns at the beginning of congestion and conducting appropriate measures (Khondaker and 

Kattan, 2015). The following reviews the VSL algorithms in the DSH strategies. 

 

      The reactive and proactive methods used to implement DSH on the HDVs are introduced 

in Section 2.2. The problems of traditional ways and corresponding methods that take CAVs into 

account are described in Section 2.3. Section 2.4 presents the definition of reinforcement 

learning techniques, followed by state-of-art methodologies for HDVs and CAVs. 

2.2 DSH Techniques for HDVs 

  The DSH has been utilized in the UK for safety reasons since the 1960s. At the very 

beginning, simulation practice was chosen considering the cost of the field test. It was not until 

the 21st century, this technique was widely implemented in Europe such as Germany, the 

Netherlands, France, and Sweden. The United States project started in Washington State in 2009 

for the main purpose of safety. Prior to field testing, algorithms should always be developed and 

evaluated in the simulation since field testing may be expensive and, if done incorrectly, can 

have unintended consequences and detrimental effects on public traffic (Lu and Shladover, 

2014). 

2.2.1 Reactive Methods for HDVs 

2.2.1.1 Rule-based Control 

 

For the first category, the rationale for determining speed limits is based on predetermined 

thresholds for a certain traffic flow situation with the objective of improving safety by 

reducing speed differences and stabilizing traffic flow. The rules are usually developed based 

on human experience rather than classical traffic flow theory. Weather and highway 

geometry may also be considered in the human-made rules activating DSH. The limitation of 
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rule-based strategies can be mainly attributed to the reaction delay. When control measures 

are taken, traffic conditions may already be in a state of breakdown, and this strategy has 

little ability to change the situation. 

 

Based on microscopic modeling, Piao and McDonald (2008) explored the safety effects of 

in-vehicle changeable speed limit information. The simulation results indicated that the use 

of VSL on highways has a significant potential to improve traffic safety through reduced 

speed disparities between and within lanes, small time headways, tiny TTC, and a reduction 

in the frequency of lane changes. Nevertheless, deployment of in-vehicle VSL may 

potentially include certain safety issues as compared to roadside VSL. For instance, when 

showing information on on-board unit (OBU) in complex scenarios, it forces VSL to 

compete with other information providers. In addition, implementations of in-vehicle VSL 

may cause significant speed differences and frequent lane changes at low penetration rates. 

Last but not least, if VSL is mandated, roadside VSL are required temporarily while not all 

vehicles have an in-vehicle device. 

 

2.2.1.2 Local Feedback Control 

 

Popov et al. (2008) designed a speed limit control method based on a distributed controller 

strategy for resolving shockwaves. The controller was dispersed in that there was a separate 

controller for each speed limit sign. Numerical optimization was used to improve the 

controller settings on the assumption that each controller has the same structure and set of 

parameters. With regard to the controller order and the degree to which the upstream and 

downstream traffic conditions were employed as inputs for the controller, the ensuing 

performances were contrasted for a number of configurations. Additional controllers 

identified in the literature were centralized model-based controllers with significant 

computational demands or switching systems employing just local information. The 

suggested approach offered a methodical approach for creating distributed controllers with 

the right quantity of upstream and downstream traffic data. Due to their high efficiency, the 

resultant controllers were desirable from an implementation standpoint. They merely 

employed data from the area and did not necessitate costly online computations. When 

compared to the uncontrolled case for the design scenario, the controller effectively 

addressed the shockwave and reduced the overall time spent by around 20%, which is 

equivalent to the performance of the best controllers documented in the literature. 

 

Waller et al. (2009) tested a variety of variable speed limit and shoulder usage tactics and 

evaluated how they affected freeway traffic flow and safety. These tactics were shown to 

homogenize traffic and improve driving conditions, but they had little effect on the system’s 

throughput. Furthermore, ITS tools that are needed to implement these methods, 
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enforcement concerns, potential roadblocks to their adoption, and a methodology for a 

cost-benefit analysis to establish their practicality, were also presented. 

 

Iordanidou et al. (2015) suggested an expanded feedback control technique for Mainstream 

traffic flow control (MTFC) enabled by VSLs, taking numerous bottleneck sites into 

consideration. For the assessment of the controller using a verified macroscopic model, 

feedback-based outcomes were compared with optimum control results. Despite the 

feedback controller also taking into account a number of practical and safety limits, it was 

demonstrated that the performance of the feedback controller approaches the results of 

optimum control. 

 

Müller et al. (2015) used a local feedback MTFC in a microscopic simulation of an on-ramp 

merge bottleneck. Important details that were not previously captured in macroscopic 

modeling were revealed by traffic behavior. The slower traffic reaction to speed limit 

adjustments was mostly caused by the more realistic VSL application at particular locations 

rather than along an entire highway segment. Furthermore, compared to what was shown at 

the macroscopic level, the nonlinear capacity flow/speed limit connection was more evident 

in the microscopic model. Significant improvements in traffic conditions were attained when 

the control law was modified as necessary.  

 

Table 1. Reactive DSH Methods for HDVs summarizes the reactive DSH methods for HDVs. 

 

Table 1. Reactive DSH Methods for HDVs 

Author  Year 
Control 

algorithms 
Metrics Results 

Piao and 

McDonald 
2008 - 

Safety (speed 

variance) 

Reduced speed differences between 

and within lanes and number of small 

headways. 

Popov et al. 2008 
Distributed 

controller 

Mobility (travel 

time) 

Prevented the generation of shock 

waves by applying VSL, Total Time 

Spent (TTS) was reduced by 20% 

compared to the uncontrolled case. 

Waller et al.  2009 
Decision-tree 

based  

Safety (speed 

variance) 

Reduced speed variance but not 

throughput. 

Iordanidou et 

al. 
2015 Generic integrated 

Mobility (travel 

time and time 

delay) 

The feedback control was able to 

come close to the optimal control 

results. 

Müller et al. 2015 - 
Mobility 

(throughput) 
Improvements on the 40% TTS. 
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2.2.2 Proactive Methods for HDVs 

2.2.2.1 Classical Control 

 

Recent research has mostly focused on more complex control logic that operates in a 

proactive manner with the aim of improving mobility while guaranteeing safety, in other 

words, proactively avoiding a problem before it occurs. Controlling the speed limit is 

essentially a process of optimization. A typical one is Model Predictive Control (MPC) 

(Hegyi et al. 2005). In the optimization, decision variables contain speed limit values 

(Hadiuzzaman and Qiu, 2013) and control locations (Zhang et al., 2015). Constraints include 

relevant traffic regulations. Objective functions entail multiple indicators, such as travel time, 

vehicle miles traveled (Lu et al., 2010), crash probabilities, throughput, queue length, and 

emission (Lin et al., 2010).  

 

The traditional proactive method usually needs a prediction model on a macroscopic level to 

forecast traffic movement. Most previous prediction models are extensions of Payne’s (1971) 

second-order model and need a fundamental diagram to describe the traffic flow. The main 

difference among the various models depends on the expression of drivers’ desired speed. 

The MPC method highly relies on the accuracy of traffic state prediction, which is difficult 

to achieve due to the complexity of the transportation system. In addition, the use of a 

macroscopic traffic flow prediction model cannot completely reflect shockwaves caused by 

changes in driving behaviors. On the other hand, microscopic traffic models can more 

precisely describe disturbances in detail. 

 

Lin et al. (2004) developed two online algorithms for VSL controls at highway work zones 

that may simultaneously meet the goals of queue reduction or throughput maximization and 

fully use all dynamic functionalities. This work carried out comprehensive tests based on 

virtual roadway systems that have been calibrated using field data to assess the efficacy of 

these suggested algorithms. Simulation analysis findings demonstrated that VSL algorithms 

can result in significant increases in work-zone throughputs and decreases in overall vehicle 

delays. Furthermore, compared to other non-controlled traffic scenarios, traffic flows that 

use VSL controls often showed fewer speed fluctuations. The decrease in speed variation 

may indirectly improve traffic safety in work zones as a whole. 

 

By enforcing lower speed limits upstream and higher speed limits downstream of the point 

where collision risk is being tracked in real-time, VSL deployment increased safety. This 

improvement was shown in medium-to-high-speed motorway regimes, but no advantage was 

seen in low-speed circumstances. The suggestions for implementing VSL by Abdel-Aty et al. 

(2006) were as follows: decreasing speed limits upstream and raising speed limits 

downstream of a site of interest; altering the speed limit abruptly in space (no gap distance); 
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introducing adjustments to the speed limit gradually (5 mph every 10 minutes); and the 

speed restriction increases up- and downstream should be significant (15 mph) and executed 

close to the point of interest (within 2 miles). 

 

To lower the risk of crashes on instrumented motorways, Lee et al. (2006) analyzed 

automated control systems for changing speed restrictions. Based on short-term variations in 

traffic flow parameters, a real-time accident prediction model was created to evaluate crash 

potential. In order to evaluate control logic, a crash prediction model was integrated with a 

microscopic traffic simulation model to mimic changes in traffic circumstances as a result of 

changeable speed restrictions realistically. The study examined how strategy control 

parameters affected the overall trip duration and crash potential reduction within this 

integrated assessment framework. The study’s findings suggested that variable speed limits, 

which temporarily lower them in hazardous traffic situations when collision possibility 

exceeds a predetermined threshold, might reduce crash potential by 5–17%. 

 

Hadiuzzaman and Qiu (2013) suggested a novel VSL management technique that explicitly 

took into account the fundamental diagrams (FDs) at active bottlenecks and their 

upstream-downstream segments. An analytical model based on the cell transmission model 

(CTM) was built in order to comprehend the efficiency of the VSL regulation in great detail. 

It was suggested to represent two changes to the FD: (1) an active bottleneck with a capacity 

loss once feeding flow reaches its limit; and (2) varying free-flow speeds for cells controlled 

by VSL. The local demand-supply technique was used to modify the CTM's boundary 

condition in order to accommodate these changes. The suggested VSL control model was 

applied in a North American urban highway corridor as a component of the VSL control 

algorithm using the model predictive control technique. This simulation research showed 

that VSL works best for traffic mobility when there is congestion. 

 

Islam et al. (2013) examined the safety and mobility effects of a model predictive VSL 

control approach. In order to forecast traffic conditions and give speed for improving 

corridor operational performance, the approach used second-order traffic flow models. The 

optimal scenario was determined by doing a sensitivity analysis of the VSL update 

frequency and the safety limitations of the VSL approach. In Edmonton, Alberta, Canada, a 

section of Whitemud Drive, an urban highway corridor, was chosen as the research location. 

A unique software module was used to implement the suggested VSL technique in the 

microsimulation platform. By estimating the collision probability for each scenario using a 

matched case-control logistic regression approach, a real-time collision prediction model 

was created for the same research area. The findings suggested that the suggested VSL 

control approach can increase safety by around 50% and mobility by about 30%. The best 

results were obtained with a VSL update frequency of 5 min and a maximum speed variation 
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of 10 km/h between succeeding time steps. The field implementation of VSL control may 

benefit from this discovery. 

 

Talebpour et al. (2013) established a method to explore the impacts of SH on traffic flow 

features and safety that relied on a cognitive risk-based microscopic simulation model 

capable of endogenously accounting for occurrences. In order to accomplish speed 

harmonization inside the microscopic simulation model, a wavelet transform-based approach 

to identify shock wave formation was paired with a reactive speed limit selection algorithm. 

There were three different sets of simulations. The application of the speed harmonization 

management approach in crowded situations resulted in a considerable improvement in 

traffic flow characteristics. An ideal spot to execute the adjustments to the speed restriction 

was upstream of the place where shock waves are detected, according to the analysis of an 

FD. The investigation also demonstrated the need of adhering to speed limits for speed 

harmonization to be successful. 

 

Li et al. (2014) created a VSL control technique to lessen the danger of secondary accidents 

during bad weather. The VSL technique was suggested to dynamically alter the speed 

restrictions in accordance with the current traffic and weather circumstances by assessing the 

occurrence condition of a secondary collision. In order to replicate vehicle moves with the 

VSL control, a car-following model was modified. To assess the control effects of VSL, two 

surrogate safety metrics based on the time-to-collision were utilized. In a simulation, five 

weather possibilities were assessed. The outcomes demonstrated that the VSL technique 

successfully lowers the probability of secondary crashes in a variety of meteorological 

conditions. Both the time integrated time-to-collision (TIT) and the time exposed 

time-to-collision (TET) were shortened by 38.19% to 41.19% and 41.45% to 50.74%, 

respectively. The impacts on safety were contrasted with those of an earlier VSL method. 

The outcomes demonstrated that their technique typically works better than the prior one. 

They also assessed the impact of the driver’s adherence to the speed restriction on the 

efficiency of VSL control. 

 

Zhang et al. (2015) examined VSL systems and aims to improve system designs with 

moving variable message signs (VMSs). The number of VMSs to be deployed, their 

positions, and the speed limits posted on the VMSs were the decision variables for the 

optimization issue, which was written as a large mixed-integer nonlinear programming 

problem. One goal was to limit the negative environmental effects of highway traffic, and 

the other was to smooth the flow propagation. In addition, a genetic algorithm was suggested 

to resolve the challenging issue. The use of numerical examples on a real motorway stretch 

demonstrated the effectiveness of VSL in achieving smooth flow and minimizing the impact 

of freeway traffic on the environment. 
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In previous studies, prediction-based optimum VSL management has been carried out using 

the macroscopic traffic flow model. One of the most important factors in the development of 

the prediction is how the drivers react to the recommended VSL. Yet, this impact was either 

ignored or poorly modelled in prior studies (by assuming that a constant proportion of 

drivers will follow the VSL, regardless of various traffic conditions). Fang et al. (2015) 

suggested a dynamic driver response model as a solution to this issue. To represent the link 

between drivers’ intended speed, the recommended VSL value, and actual traffic status 

factors, the model was developed and calibrated using field data. This model was used to 

quantitatively define the drivers’ dynamic response to different VSL levels while taking into 

account the present traffic circumstances. Moreover, it was demonstrated through a 

simulation using real-world data that the proposed VSL control algorithm with improved 

driver reaction modeling accurately forecasts traffic conditions and significantly lowers 

crash probability in the traffic network. 

 

Wang et al. (2017) used microsimulations to assess several active traffic management (ATM) 

techniques to increase the safety of a busy highway weaving stretch. ATM strategy effects on 

traffic safety were assessed using crash probabilities and the Surrogate Safety Assessment 

Model. Based on the real-time safety analysis model for weaving segments, the crash 

probabilities were determined. The techniques included ramp metering (RM), variable speed 

limit (VSL), and combined RM and VSL (RM-VSL). Overall, the findings indicated that the 

ATM techniques enhanced the safety of the weaving section. The modified ALINEA RM 

algorithms surpassed the original ALINEA algorithm in terms of safety since they took lane 

occupancy and other factors into account. The 45 mph VSLs, which were situated upstream 

of the investigated weaving portion, greatly improved safety without appreciably increasing 

average travel time. A combined RM-VSL approach was also suggested with the intention of 

enhancing traffic safety through the application of RM and VSL. To avoid lengthy waits on 

ramps, the modified ALINEA RM was changed in the combined RM-VSL strategy in 

accordance with the duration of the queue. The findings demonstrated that the combined 

RM-VSL technique reduced conflicts by 16.8% and crash chances by 6.0%. 

 

2.2.2.2 Open-loop Control 

  

Alessandri et al. (1999) examined a traffic control issue with a dynamic macroscopic model 

by simulated analysis. In order to enhance traffic behavior near congestion, an optimal 

control problem was formulated for variable-speed signaling. With the help of real-time 

estimations of the traffic density, a speed signaling system was activated using a traffic state 

estimator based on the extended Kalman filter. A performance criterion was minimized (or 

maximized) in order to determine the closed-loop variable-speed signaling control law. The 

Powell’s method-based optimization process was computationally tractable for off-line 
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execution on inexpensive machines as well. Results from simulations showed how effective 

the suggested strategy is in reducing congestion. 

 

Hegyi et al. (2005) provided a model predictive control method for coordinating changeable 

speed restrictions for highway traffic in an effort to reduce shock waves. To reduce overall 

journey time, they started by optimizing continuous valued speed restrictions. Then, they 

added a safety restriction that stops cars from encountering speed limit decreases greater 

than 10 km/h. Moreover, they took into consideration discrete speed limitations to improve 

the congruence between the computed and applied control signals. A benchmark problem 

served as an illustration of their strategy. 

 

Yang et al. (2013) presented two methods for proactive VSL on motorway portions with 

recurrent congestion. The suggested fundamental model calculated the speed limit while 

using embedded traffic flow relations to forecast the evolution of the congestion pattern over 

the anticipated time horizon. In order to address the challenge of collecting driver responses 

to VSL control, this work also suggested an enhanced model that further utilized Kalman 

Filter to boost the precision of traffic state prediction. With various traffic scenarios and 

various control goals, both models were studied. Their thorough simulation research using a 

VISSIM simulator, calibrated with field data from prior VSL demonstration sites, 

demonstrated the advantages of the suggested VSL control model when compared to the 

situation without VSL. The outcomes also showed that both proactive models may surpass 

the basic models and greatly cut down on travel time as well as the number of pauses over 

the places where bottlenecks frequently occur. The model with the control of reducing speed 

variation was found to perform much better than other models for a variety of chosen MOEs, 

including average number of stops and average trip duration. 

 

Table 2 summarizes the reactive DSH methods for HDVs. 

 

Table 2. Proactive DSH Methods for HDVs 

Author Year 
Control 

algorithms 
Metrics Results 

Lin et al. 2004 
Two online 

algorithms 

Mobility, 

environmental 

impact  

Reduced work-zone time delay and 

increase throughputs, the former 

performs better in speed variances. 

Abdel-Aty et 

al. 
2006 

Crash prediction 

model 
Safety 

Improvement in 

medium-to-high-speed regimes, but 

no benefit in congested situations. 
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Lee et al. 2006 
Crash prediction 

model 

Safety, 

mobility 

Reduced crash potential, but higher 

travel time. 

Hadiuzzaman 

and Qiu 
2013 

Cell 

transmission 

model (CTM) 

Mobility 

(throughput, 

travel time) 

Increased the flow volume by 5–7% 

and reduce the total travel time by 9–

11% in the simulation. 

Islam et al. 2013 MPC 
Safety, 

mobility 

Improved both safety and mobility by 

approximately 50% and 30%. 

Talebpour et 

al, 
2013 

Wavelet 

transform 

Safety, 

mobility 

Significant improvements in flow and 

safety. Analyze the optimal location 

and time for the VSL transition.  

Li et al. 2014 

Modified 

car-following 

models 

Safety 

Reduced the risks of secondary 

collisions in various weather types. 

41.45%–50.74% less TET, 38.19%–

41.19% less TIT. 

Zhang et al. 2015 

Mixed-integer 

nonlinear 

programming 

Safety, 

environmental 

impact  

VSL can effectively improve the 

safety and environmental impact of 

freeway traffic. 

Fang et al. 2015 
Dynamic driver 

response model 
Safety 

Predicted traffic states more precisely, 

and effectively reduced the crash 

probabilities. 

Wang et al. 2017 

Consolidated 

RM-VSL, the 

modified 

ALINEA RM  

Safety 

Reduced the number of conflicts by 

16.8% and decreased the crash odds 

by 6.0%. 

Alessandri et 

al. 
1999 

Second-order 

METANET 

(Extended 

Kalman filter) 

Mobility 

Simulation results demonstrated the 

efficacy of the proposed approach for 

preventing and reducing congestion. 

Hegyi et al. 2005 
Second-order 

METANET 

Mobility 

(travel time) 

The system travel time can be reduced 

by up to 20.1%.  

Yang et al. 2013 Kalman filter 

Mobility (stop 

times, travel 

time) 

Reduced vehicle stops by up to 42.4% 

and the travel time by up to 17.6% in 

the simulation. 
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2.3 DSH Techniques for CAVs 

2.3.1 The Problems of Traditional Ways 

   The primary drawback with traditional DSH algorithms’ effectiveness in CAVs is their 

inability to adjust their control strategy to a new traffic circumstance, in which case they perform 

less ideally. The majority of current studies can only suggest drivers adjust vehicles’ speed. 

These strategies rely on the compliance rates of drivers and even fail due to unexpected human 

behavior. Additionally, most studies depend on a few fixed sensors with low resolution and 

geographic limitations. There are delays in the collection of information, and control strategies 

can only affect a small area. Fortunately, emerging CAVs bring opportunities to address the 

problems of traditional DSH techniques through vehicle-to-everything (V2X) technology. 

Congestion can be alleviated with DSH powered by CAVs (Tajalli and Hajbabaie., 2018).  

 

  The disadvantage of DSH techniques in CAVs is the presumption that the communication 

network is error-free and that information is transferred to the cars without delay or information 

loss. DSH for CAVs also has the drawback of being obsolete at extremely high penetration rates. 

The advantages of CAVs in future mixed traffic flows are apparent in enhancing the macroscopic 

traffic characteristics of highways and eliminating the requirement for separate control, 

regardless of the penetration rate. This subsection gives an overview of research in this field, 

starting with the earliest ones. It categorizes the strategies in the same way as DSH in HDVs did. 

2.3.2 Reactive Methods for CAVs 

   Most methods in this category are rule-based, in which the rationale is adjusting speed 

limits by predetermined thresholds for a certain traffic condition. It gathers the current traffic 

data from the downstream congestion area, and maintains traffic states at critical density. 

 

  Li et al. (2017) created a control approach that combines a cooperative adaptive cruise 

control (CACC) system with a variable speed limit (VSL) to lower the probability of rear-end 

collisions near motorway bottlenecks. First, a testbed for microscopic simulation was built, in 

which the precise PATH CACC models and substitute safety parameters of the time-exposed 

time-to-collision (TET) and time-integrated time-to-collision (TIT) were used. For the proposed 

vehicle-to-infrastructure system of CACC and VSL, a feedback control algorithm was 

subsequently devised. According to the simulation findings, the suggested integration system 

with 100% CACC penetration rate may significantly lower the risks of rear-end collisions, with a 

98% drop in TIT and TET. When compared to manual, uncontrolled cars, the average trip time 

was likewise reduced by 33%. Moreover, the proposed integrated system’s safety benefits 

exhibited a good degree of stability at a variety of bottlenecks with varying degrees of speed 
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decreases. According to the results of the sensitivity analysis, the safety performance was 

significantly impacted by the CACC penetration rate. Since the penetration rate of the CACC 

was low, the VSL control was crucial in lowering the likelihood of a rear-end accident. The 

mixed traffic flow of manual and CACC cars was less harmful when combined with VSL 

controls. 

 

  Li and Wanger (2019) conducted a thorough evaluation based on simulation utilizing a 5.3 

km section of the Auckland Motorway and traffic data given by New Zealand Traffic Agent to 

explore the possible gains or losses due to the introduction of AVs into current highway systems. 

On mobility, safety, pollutants, and fuel usage, they examined the effects of various AV shares. 

The highway was evaluated both with and without traffic management under four different 

traffic scenarios: heavy traffic (>0.95*capacity), light traffic (0.7*capacity), free-flow traffic 

(0.5*capacity), and future traffic (3*heavy traffic volume). 

 

  Wu et al. (2020) created a control approach to lessen the likelihood of a rear-end collision 

during bottlenecks on the motorway while it is foggy. With consideration of the various 

correlations between the gap and visibility distance, a VSL control algorithm was created. 

Moreover, the VSL approach was evaluated in a fully CV setting. To merge the VSL with CV 

control, a framework for feedback control was created. Using the use of the microsimulation 

VISSIM and the IDM, which was used to account for cars following in the CV environment, the 

suggested VSL approach was put into practice and evaluated for a highway segment with a 

bottleneck. Ultimately, two measurements—total travel time (TTT) and time-to-collision at 

braking (TTC brake)—were used to assess how well the suggested control approach worked. The 

findings showed that the VSL control significantly decreased the likelihood of a rear-end 

collision and that compliance rates might have an impact on the control's effectiveness. It was 

also discovered that the CV environment might increase traffic efficiency and safety. 

 

2.3.3 Proactive Methods for CAVs 

  

  Khondaker and Kattan (2015) introduced a control algorithm for maximizing mobility, 

safety, and environmental benefit at the same time in a connected vehicle environment. They 

concentrated on individual driver behavior (such as acceleration and deceleration) using a Model 

Predictive Control (MPC) method. Total Travel Time (TTT) was calculated using a microscopic 

traffic flow prediction model; immediate safety was assessed using a surrogate safety measure 

called Time-To-Collision (TTC); and the environmental effect was assessed using a microscopic 

fuel consumption model called VT-Micro. The ideal speed limit values were modified based on 

real-time driver adherence to the imposed speed limit. To assess the effectiveness of the 

established technique for various weights in the objective function and for two various 

percentages of CV, a sensitivity analysis was carried out. The findings showed that, with 100% 

penetration rate, the proposed VSL strategy consistently outperformed the uncontrolled scenario, 
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resulting in up to 20% reductions in total trip time, increases in safety of 6–11%, and fuel savings 

of 5–16%. The scenario that focused just on safety produced more optimal gains than the 

multi-criteria optimization. One may thus contend that in the event of 100% CV penetration rates, 

optimizing alone for safety was sufficient to obtain simultaneous and ideal improvements in all 

measurements. Mixed findings were achieved when optimizing for simply mobility or fuel 

consumption, which demonstrated a higher accident risk for lower penetration rates. This showed 

that with such a high penetration rate, multi-criteria optimization is essential to get the best and 

most balanced results. 

 

  Müller et al. (2015) investigated the impact of various autonomous vehicle penetration 

rates on MTFC-VSL using VSL as actuators. The findings of the simulations demonstrated that 

greater performance is correlated with higher penetration rates, with a considerable effect up to 

30% penetration rate and very small improvements above that, and that mixed VSL application 

methods may also be harmful to traffic. 

 

  Malikopoulos et al. (2016) focused on the issue of speed regulation of a number of AVs 

before they reach a highway speed zone. They defined the control issue and offer an analytical, 

closed-form, real-time implementation-ready solution. Under the strict safety constraint of 

avoiding rear-end collisions, the solution produced the best acceleration and deceleration for 

each vehicle. A tiny simulation testbed was used to assess the solution's performance, and it 

demonstrated that the suggested strategy considerably decreases both fuel consumption and 

travel time. Fuel consumption was decreased for three different traffic volume levels by 12–17% 

for the VSL algorithm, by 18–34% for the vehicular-based speed harmonization (SPD-HARM) 

algorithm, and by 19–22% compared to the baseline scenario, which takes human-driven 

vehicles into account. Comparable improvements in travel time were made in comparison to the 

baseline scenario, the VSL algorithm, and the vehicular-based SPD-HARM algorithm, which 

ranged from 26% to 30%, 3% to 19%, and 31%-39%, respectively. 

 

  Yu and Fan (2016) illustrated the optimal VSL technique for a motorway stretch with 

several bottlenecks in a CAV environment. An enhanced cell transmission model (CTM) that 

accounted for capacity reduction and mixed traffic flow, including conventional human-driven 

automobiles and heavy vehicles, as well as AVs, was used to build the VSL control. A 

multiple-objective function was developed with the intention of enhancing operational 

effectiveness and facilitating speed transitions. In order to resolve the integrated VSL control 

problem, a genetic algorithm (GA) was used. The planned control structure was put to the test on 

a real-world length of roadway. Sensitivity analyses were carried out to examine the effects of 

the communication range and CAV penetration rate. The designed VSL control not only 

increased overall efficiency but also lowered emission. The simulation findings also surpassed 

the VSL control alone when it integrates vehicle-to-vehicle (V2V), vehicle-to-infrastructure 
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(V2I), and infrastructure-to-vehicle (I2V) communication. Better performance can also be 

attained when the penetration rate of CAVs rises. 

 

  Li et al. (2019) presented a revolutionary VSL-MPC technique employing a chain of CAVs. 

In this work, the influence of the innovative VSL control was added to a discrete first-order 

model that took the capacity decrease of jam waves into account. They cast an MPC scheme into 

a multi-layer control structure based on the extended model. On a fictitious multi-lane motorway 

with transient jam waves, a series of microscopic simulation experiments were carried out to 

validate the expanded model and assess the suggested control technique. The traffic flow model 

can replicate the development of traffic under VSL management, and a 3.7% decrease in the 

overall delay time of mainline traffic may be achieved. 

 

Table 3 summarizes the reactive and proactive DSH methods for CAVs. 

 

Table 3. Reactive and Proactive DSH Methods for CAVs 

Author Year Model Scenarios 
MPR

s 

Comparison

s 
Results 

Li et al. 2017 
ACC- 

VSL 

10 km, 

traffic 

demand 

1600 

veh/h/lane 

0%–

100% 

Avs 

ACC only, 

VSL only 

80% lower Time-to-collision 

(TTC), 77% lower Time 

Exposed Time-to-collision 

(TET).  

Li and 

Wagner 
2019 

Rule- 

based  

5.3 km, 

three 

demand  

0%–

100% 

Avs 

no control 

83% higher throughputs, 88% 

higher maximum volume, 

26% lower travel time against 

0% Avs, 31% lower fuel 

consumption at 70% Avs. 

Wu et al. 2020 
Feedback 

CV-VSL 

9.3 mile, 

low and 

high 

volume 

0% 

and 

100% 

CVs 

no VSL or 

CV 

Reduced rear-end crashes 

affected by compliance rates. 

Enhancing safety and 

efficiency. 

Khondaker 

and Kattan 
2015 MPC 

8km 

includes 

incidents, 

2000 veh/h 

50% 

and 

100% 

CAV

s 

no control 

20% lower TTT, 

11% improved TTC, 

16% lower fuel consumption 

Müller et al. 2016 

Feedback 

cooperativ

e model 

4.3km, 

congestion 

forms once 

the ramp 

demand 

increases 

0%–

100% 

Avs 

Point-VSL 

49.5% lower time delay at a 

40% AV, 47.9% lower delay 

at a 90% AV 
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Malikopoul

os et al. 
2016 

Hamiltoni

an 

analysis 

2km, three 

traffic 

demands 

100% 

Avs 

no control, 

VSL, 

SPD-HARM 

22% lower fuel consumption, 

30% lower TT 

Yu and Fan 2019 
Genetic 

Algorithm 

8km 

includes 

multiple 

bottlenecks 

0%–

10% 

CAV

s 

no control, 

VSL-only, 

VSL-V2X 

36% lower TTT, 

68% lower delays, 

66% lower number 

of stops, 7.6% lower 

emissions 

Li et al. 2019 MPC 

10 km, 

three lanes 

5400 veh/h 

20% 

CAV 
no-control Total delay reduction of 3.7%  

 

2.4 Reinforcement Learning (RL) Methodologies 

   The previous studies require information on the traffic flow dynamics in terms of the 

fundamental diagram (relation between flow, speed, and density) to tune the controller 

parameters. Recently, RL derived from machine learning technology has provided another 

efficient solution to the optimal control problems in intelligent transportation systems. 

Optimization of DSH requires the determination of an optimal policy for displaying speed limits 

as actions on VMS or delivering them directly to vehicles in the CAV environment. RL also 

outperforms classical optimization methods since it excludes the requirement to comprehend the 

explicit model of traffic flow dynamics and how VSL achieves (Kušić et al., 2020). The main 

problem with using RL is that the learning process is not well explained. It is unable to provide a 

precise reason for why the agent discovers a certain course of action. 

2.4.1 The Classification of RL 
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   The following figure contains a series of classical RL algorithms, and these algorithms 

can be classified from different aspects, such as model-based and model-free; value-based and 

policy-based; round update and single-step update; on-policy and off-policy. More details can be 

found in Spinning up of OpenAI.   

   The Model-free will not learn and understand the environment. The Model-Based is the 

opposite, in which it uses a model to simulate the environment and get feedback. Common 

methods are AlphaGo (Silver et al., 2016); World Models (Ha and Schmidhuber, 2018); I2A 

(Imagination-Augmented Agents) (Weber et al., 2017); MBMF (Model-Based RL with 

Model-Free Fine-Tuning) (Nagabandi et al., 2017). Compared with Model-Free, Model-Based 

has one more step to simulate the environment, and all the situations that will happen are 

predicted, and then the best situation is selected.  

   

  The Policy-Based method directly outputs the probability of the next action, and the 

action is selected according to the probability. However, the action may not always be selected 

with the highest probability, and it still needs to be considered as a whole, which is applicable to 

discontinuous and continuous actions. Common methods are Policy Gradient (Sutton et al., 

Figure 2. Taxonomy of RL algorithms 
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2000); TRPO (Trust Region Policy Optimization) (Schulman et al., 2015); PPO (Proximal Policy 

Optimization) (Schulman et al., 2017). The Value-Based method outputs the value of the action 

and selects the action with the highest value. It applies to non-sequential actions. Common 

methods are Sarsa and DQN (Deep Q-Networks) (Mnih et al, 2015). The Actor-Critic is a 

combination of the two. The actor makes actions based on probability, and the critic gives values 

based on actions, thereby accelerating the learning process. Common methods are A2C / A3C 

(Asynchronous Advantage Actor-Critic) (Mnih et al., 2016); DDPG (Deep Deterministic Policy 

Gradient) (Lillicrap et al., 2015); TD3 (Twin Delayed DDPG) (Fujimoto et al., 2018); SAC (Soft 

Actor-Critic) (Haarnoja et al., 2018). 

 

  The round update method refers to updating after the entire learning process is over. 

Common methods include Monte-Carlo learning and the basic policy gradients. The single-step 

update method means that each step in the learning process is updated. Common methods 

include Q-learning (Watkins et al., 1992), Sarsa, and upgraded policy gradients. In comparison, 

the single-step update method is more efficient.  

 

On-policy means that the agent must participate in the learning process, and the typical 

algorithms are Sarsa, PPO, and A3C. Off-policy refers to not only participating in it by itself, but 

also learning according to the learning process of others. Typical methods are DQN and DDPG. 

   

  RL is a known reward function. However, when the task is very complex, the reward 

function is often difficult to determine. Inverse RL is used to solve this problem and find the best 

reward function according to the expert strategy. 

2.4.2 RL for HDVs and CAVs 

   When traffic on the urban freeway is steady in a spatial-temporal environment, DSH can 

give acceptable performance. Nevertheless, it loses some of its efficacy when the capacity of a 

highway is reduced or when the traffic circumstances are subject to abrupt oscillations in traffic 

demand. Being one of the ML methods, RL offers an ideal balance between the complexity and 

effectiveness of the many data-driven traffic control techniques (Kušić et al., 2020). It is 

beneficial to use RL-VSL because it has continual self-adaptation capabilities that can deal with 

control issues caused by brand-new, unanticipated traffic situations. 

 

  Zhu and Ukkusuri (2014) built a link-based dynamic network loading model to mimic the 

propagation of traffic flow permitting dynamic speed limits. By examining the difference 

between the queue-forming end and the dissipation end, shockwave propagation was clearly 

identified and recorded. Second, a real-time control mechanism was used to handle the Markov 

Decision Process (MDP) problem. In order to set time-dependent link-based speed limitations, 

the controller was described as an intelligent agent interacting with the stochastic network 
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environment. Using the R-Markov Average Reward Technique (R-MART) based reinforcement 

learning algorithm, the optimal speed limit scheme was obtained based on several metrics, such 

as total throughput, delay time, and vehicle emission. Compared to the basic scenario of no speed 

limit enforcement, the overall travel time and emissions (in terms of CO) were reduced by 

around 18% and 20%, respectively. 

 

  Walraven et al. (2016) provided an innovative reinforcement learning-based approach to 

traffic flow optimization. In order to alleviate traffic congestion, they employed Q-learning to 

understand the rules governing the maximum speed that is permitted on a roadway. The 

difference between their work and previous methodologies was traffic estimates. A number of 

simulation studies demonstrated that the resultant policies greatly decrease traffic congestion 

when there is a large demand and that the quality was enhanced by traffic predictions. Also, the 

policies were strong enough to handle erroneous density and speed observations. 

 

  A VSL control technique based on Q-learning was suggested by Li et al. (2017). A 

QL-based offline agent and an online VSL controller were both incorporated into the controller. 

To accomplish a long-term objective of system optimization, the VSL controller was taught to 

discover the optimal speed limits for diverse traffic conditions. Using a modified cell 

transmission model for a highway recurring bottleneck, the control effects of the VSL were 

assessed. The cell transmission model had a new parameter that takes into consideration the 

drivers’ excessive speed in light traffic. Two scenarios that took into account both constant and 

varying traffic demands were assessed. The outcomes demonstrated that the suggested QL-based 

VSL technique worked better than the feedback-based VSL strategy. More precisely, the 

suggested VSL management technique decreased system travel time by 49.34% in a steady 

demand and by 21.84% in a fluctuating demand. 

 

  Similarly, Li et al. (2020) recommended a VSL control method based on RL to lessen 

crash risks brought by oscillations. The state, action, and reward were thoughtfully created to 

increase safety. To evaluate the safety close to motorway bottlenecks, a rear-end crash risk model 

was utilized. The simulation framework was modified from the cell transmission model. The 

outcomes demonstrated that the suggested RL-based VSL control effectively decreased the 

accident risks by 19.4%. An online learning function was built to increase stability and managed 

well under poor driver compliance with the aid of continual learning. 

 

  The issue of the exponential increase of the state space dimension and the high number of 

learning iterations are both disadvantages of RL. Using approaches for function approximation, 

this can be resolved. Kušić et al. (2018) examined three distinct feature-based state 

representation techniques in terms of the convergence of Total Time Spent. The competing 

methods were assessed using the VISSIM with a representative traffic model. The findings 

demonstrated that function approximation approaches surpassed RL-based VSLC developed with 
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a lookup table by an average increase of 10%, while feature extraction methods (Coarse and Tile) 

coding showed a slightly quicker learning rate. 

 

  To resolve the limitation of state representation and state-action space explosion, 

Greguri´c et al. (2020) introduced a Deep Q-Network to mimic the Q-function, and a unique 

learning technique was presented for the VSLC application with the potential to monitor vehicles 

at the microscopic level. The suggested reward function directed learning in the direction of 

reward enhancement and the avoidance of oscillation between successive speed limits. 

 

Table 4 summarizes the RL-based DSH methods for HDVs. 

 

Table 4. RL-based DSH Methods for HDVs 

Author Year 
Control 

algorithms 
Metrics Results 

Zhu and 

Ukkusuri 
2014 

Reinforcement 

Markov 

Average 

Reward 

Technique 

(R-MART)  

Mobility 

(travel time), 

environmental 

impact  

Reduced TTS by 18% and almost 20% less 

CO2 emissions compared to the case 

without VSL. 

Walraven et al. 2016 Q-Learning  

Mobility 

(speed 

variance, travel 

time) 

A decrease in TTS by approximately 30%. 

Li et al. 2017 
Q-Learning 

(kNN-TD) 

Mobility 

(travel time) 

The QL-VSL approach significantly 

outperformed the feedback-based with an 

improvement of TTT up to 21.84%. 

Kušić et al. 2018 

Q-Learning 

linear 

approximation 

Mobility 

(travel time) 

Function approximation methods 

outperform RL-based VSLC by an average 

improvement of 10 %, where feature 

extraction methods (Coarse and Tile) 

coding showed a slightly faster learning 

rate. 

Greguri´c et al. 2020  Deep QL 

Mobility 

(throughput), 

safety 

Increased the average mainline speed and 

reduce traffic density. The oscillations 

between the posted speed limits and the 

measured speeds were prevented. 

Li et al. 2020 Q-Learning Safety 

Reduced the crash risks by 19.4% while 

only increase the TTT by 1.5%; perform 

well under lower compliance rate with 

continuous online learning. 
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  To increase the throughput of a bottleneck after the San Francisco-Oakland Bay Bridge, 

Vinitsky et al. (2018) created unique control strategies for AVs. A two-stage bottleneck forms 

where four lanes drop to two and subsequently to one lane, a new library for applying DRL to 

traffic micro-simulators. First, they described the bottleneck’s uncontrolled inflow-outflow curve 

and brought an inflow of AVs with Lagrangian control. They constructed a parametrization of the 

controller with per-lane changing speed limits to manage the flow. It showed that a 10% 

penetration rate may increase the bottleneck’s throughput by 200 vehicles per hour, or 25% at 

high inflows. Lastly, the controller offered equivalent performance to additional ramp metering 

by comparing to feedback ramp metering. 

 

  For differential variable speed limit (DVSL) control, a DRL model was created by Wu et 

al. (2020), allowing for the imposition of dynamic and unique speed limits in various lanes. The 

suggested model learned a large number of discrete speed limits in a continuous action space 

using new actor-critic architecture. The DVSL controller was trained using a variety of reward 

signals, including total travel time, bottleneck speed, emergency braking, and vehicle emissions. 

The simulation findings demonstrated that the DRL-based DVSL control approach was capable 

of enhancing the freeway’s safety, efficiency, and environmental friendliness. The generalization 

of the controllers with various driving behavior features allowed for observation of the DRL 

agent’s resilience. 

 

  Seliman et al. (2020) provided a real-time, optimum control system to assist CAVs in a 

lane-drop location on a motorway (e.g. work zones). The Deep Q-Network (DQN) was used to 

identify the driving speed and lane change with the least time delay. The agent was trained using 

VISSIM. The performance was compared to that of a human-driven vehicle without intelligent 

control in terms of travel time. It showed how DQN-RL can help the CAV traverse the lane drop 

location wisely. In particular, the travel time decreased by almost 96% compared to the basic 

case. Further tests of the agent’s resilience were conducted. The mean and standard deviation of 

the travel time reduction were around 31% and 61%, respectively. 

 

  Ko et al. (2020) suggested speed harmonization and merging control using CAVs. They 

used two deep Q networks correspondingly to save fuel and reduce traffic congestion. They also 

analyzed the trained Q-networks under various scenarios in terms of vehicle arrival rates and 

CAV market penetration rates. In comparison to the late merge control without speed 

harmonization, the simulation results showed that the suggested technique enhanced the mixed 

traffic flow by boosting throughput up to 30% and lowering fuel consumption up to 20%. 

 

  Vrbanić et al. (2021) integrated the two-step Temporal Difference target with the 

Q-Learning algorithm to improve the algorithm's ability for mixed traffic flows. Analyzing 

various CAV penetration rates, the outcomes were compared with a rule-based VSL and the 

no-control situation. The findings demonstrated that Q-Learning can adapt to changing 
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penetration rates and learn the policy while reducing Total Travel Time and Mean Travel Time. 

There was further evidence that the unnecessity of separate VSL as the penetration rate rises. 

   

Xiao et al. (2022) explored the mainline VSL adjustment of the upstream off-ramp under the 

CV environment based on Q-learning. Three schemes, free control, rule-based, and Q-learning 

were designed by Python and VISSIM. The findings showed that mainline dynamic VSL 

adjustment of off-ramp upstream based on Q-learning algorithm performed well. The findings 

may offer useful information for reducing traffic congestion and managing traffic flow in the 

context of CAVs. 

   

Gregurić et al. (2022) introduced spatially dynamic speed restriction zones. An innovative 

traffic state representation based on a series of sequential matrices that encode each vehicle’s 

position and speed on the controlled road during the control time step was necessary for the 

spatial layout of speed restriction zones. The Deep Deterministic Policy Gradient (DDPG) 

architecture was used to calculate the actions for each proposed VSL strategy. ConvLSTM layers, 

which integrated Convolution and Long Short-Term Memory (LSTM), as well as Convolution 

and Fully Connected layers, were included in the DDPG learning models. The proposed VSL 

techniques outperformed baseline and static speed limit zones in terms of throughput (no-control 

and Simple Proportional Speed Controller algorithm). They simultaneously boosted the average 

headway while just slightly increasing the amount of severe braking. 

 

Table 5 summarizes the RL-based DSH methods for CAVs. 

 

Table 5. RL-based DSH Methods for CAVs 

Author Year Model Scenarios MPRs Comparisons Results 

Vinitsky 

et al. 
2018 TRPO (GRU) 

941m 

includes 

lane drop, 

1500 veh/h 

100% 

AVs 

No control, 

feedback 

ramp 

metering 

25% higher outflow for 

medium traffic 

demand, no control 

performed better for 

lower traffic demand. 

Wu et al. 2020 

Priority 

Replay- 

DDPG 

875.51m 

includes 

on-ramp 

and 

off-ramp 

100% 

CAVs 

No control, 

Q-Learning, 

DQN, 

Actor-Critic 

8.1% lower ATT in 

incidents scenario, 

5.8% lower in scenarios 

without incidents. 

DQN is safer than 

DDPG, Actor-Critic is 

the worst. 

Seliman 

et al. 
2020  DQN 

2km 

includes 

lane-drop 

100% 

CAVs 
No control 

The reduction in travel 

time is around 96 %. 

Ko et al. 2020 DQN 

3.4 km 

includes 

two control 

areas, 

Mixed 

CAVs, 

CVs, 

and 

Late merge 

control 

without speed 

harmonization 

Increased the 30% 

throughput and 

reducing the 20% fuel 

consumption. 
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2000-4000 

veh/h 

HDVs 

Vrbanić 

et al. 
2021  Q-Learning 

8 km 

includes 

two 

on-ramps 

and one 

off-ramp  

0-100% 

CAVs  

No control, 

rule-based  

Improved the TTT and 

ATT. The results are 

most obvious in low 

MPRs.  

Xiao et 

al. 
2022  Q-Learning 

1.6 km, exit 

to 

intersection 

is 300 m 

100% 

CAVs 

No control, 

rule-based 

37.60% better travel 

efficiency, 27.49% 

lower average delay. 

Gregurić 

et al. 
2022 

 DDPG 

(ConvLSTM)  

8 km 

includes 

two 

on-ramps 

and one 

off-ramp  

10 % 

buses, 

10 % 

trucks, 

80 % 

personal 

vehicles 

No-control, 

Simple 

Proportional 

Speed 

Controller  

Higher overall 

throughput compared 

to static speed limit 

zones, the average 

headway is increased. 
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Chapter 3. Deep Reinforcement Learning-Based Dynamic Speed 

Harmonization at Recurrent Bottleneck 

3.1 Introduction 

  This chapter investigates the effects of dynamic speed harmonization in mixed traffic flow 

involving Human-Driven Vehicles (HDVs) and CAVs on the freeway. To be more specific, (a) it 

conducts a comprehensive review of DSH on HDVs and CAVs, respectively, and state-of-the-art 

methodology to implement this technique; (b) it develops a DSH strategy based on deep 

reinforcement learning, and better understands how CAVs can improve operational performance; 

(c) considering that CAVs will coexist with HDVs for a long time, a series of numerical 

experiments are conducted under different Market Penetration Rates (MPRs) through various 

simulated scenarios; (d) a holistic performance evaluation framework is formulated to evaluate 

the impacts on MOEs, and potential interactions between MOEs are explored. 

    

  The remainder of this chapter is organized as follows. The methodology is introduced in 

Section 3.2. The simulation environment and experimental settings are described in Section 3.3. 

The results and discussions are illustrated in Section 3.4.  

 

3.2 Methodology 

3.2.1 DRL framework of DSH 

The DSH issue can be regarded as a Markov decision process (MDP), which is also the core of 

DRL. It is composed of (S, A, P, R), where S represents a set of states s, A denotes a set of actions 

a, P is the transition probability from the last step a in s based on policy π that leads to next state s’, 

and R is the immediate reward with a discount factor γ  from 0 to 1 for the agent after the transition. 

The objective of the agent is to maximize the cumulative rewards that interact with the 

environment. Figure 3 shows how DRL is implemented in DSH. In the DRL framework, the agent, 

which is the VSL controller managed by a DRL algorithm, receives the state represented by traffic 

parameters in the downstream congestion area. The agent takes actions that are variable speed 

limits and returns them to the environment. Then, the environment sends a new state decided by a 

defined policy mapping from the previous state and action. The feedback from the environment to 

the agent is to maximize the cumulative rewards represented by performance indicators. The 

configurations of environment, agent, state, action, and reward function are as follows: 
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Environment and agent: The environment is a freeway mainline segment that includes a 

weaving area between an on- and off-ramp, and recurrent congestion occurs in the weaving area. 

More road configuration details will be described in Section 4.3. The agent is the VSL controller, 

which can interact with CAVs by sending and displaying differential speed limits for each lane. 

This is easy to implement in CAVs environment with V2X technology. Due to the complexity 

that regards each CAV as a VSL controller, this study mainly focuses on the single-agent system. 

 

State: It consists of traffic states collected by detectors, and can be transformed into a 

vector or an image as input for deep neural networks in DRL. State representation is a 

complicated issue due to the difficulty to describe the state transition process. It usually considers 

traffic parameters such as density, average speed, or traffic volume of the congestion area. In this 

research, immediate occupancy rates of each lane in the upstream mainline, on-ramp, and 

downstream weaving area (Li et al. 2017) by specific detectors are collected. The occupancy 

rates of detectors are used as the input of the states. 

 

Action: This study uses differential speed limits for each lane. The actions are set as 

discrete values attributed from 0 to A-1, where A is the action space. The speed limit equals V0 + 

M(A-1), where V0 is the minimum speed limit, and M is an integer increment and usually takes 5 

or 10 mph. Given that the shock-wave occurs by the encounter of two traffic states under 

different speeds, it contends that this issue can be efficiently resolved by maintaining a constant 

speed limit. The controller dynamically configures the speed limit based on different traffic 

congestion states, which is how the DSH implemented.  

    

  Reward function: Similar to the objective function in optimization, the goal of DRL is to 

maximize the reward. Defining an effective reward function is a tricky issue, and there is 

currently no unified statement to determine which reward is optimal, and the choice of reward 

function will largely affect the performance of DRL. It often depends on the MOEs the study 

wants to improve. Generally, real-time indicators, such as total travel time, number of emergency 

braking, emissions or fuel consumption, are selected. Although a complex reward function can 

Figure 3. The Control Scheme of DRL in DSH 
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more accurately reflect the traffic state, an overly complex reward will make the algorithm 

difficult to converge. Considering that the primary goal of DSH is to ensure safety, this research 

defines a safety-oriented function as r=- θt, where θt is the cumulative emergency deceleration 

that is above the default value (4.5 m/s2) in the simulation, in which it reckons that the risk of a 

collision increases as the cumulative value increases. Here the value is considered as a threshold 

for the reward function. During the harmonization, the vehicle can follow this deceleration rate 

or not according to the traffic congestion state, as long as the final reward reaches the optimal 

point. 

3.2.2 DRL Algorithm of VSL Controller 

The DRL algorithm selected to control the speed limit is Deep Deterministic Policy 

Gradients (DDPG) (Lillicrap et al. 2015). It is a model-free, combination of off-policy 

Q-learning and on-policy gradients-based algorithm. The action dimension could be an 

exponential increase if each lane is set differential speed limits, and the discrete Q-learning 

method may encounter a space explosion problem. Therefore, an algorithm capable of handling 

continuous action without enumerating all values should be considered. The main advantage of 

DDPG is its ability to choose continuous actions, which allows for a lot of flexibility when 

developing different DSH strategies (Gregurić, Kušić, and Ivanjko 2022). The policy is built on 

an Actor-Critic framework that provides both value- and policy-based function approximations 

in the same deep neural networks. The actor takes actions, and then the critic evaluates the policy 

π characterized by the actor and predicts the target Q-value function: 

 

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝑄(𝑠′, 𝑎)                       (1) 

   

  Where 𝑠 denotes the current state, 𝑠′ denotes the next state, 𝑟 is the reward function, 

and 𝛾 is the discount factor which is set to 0.9. The objective of the actor is to maximize the Q 

predicted by the critic through a trial-and-error interaction. 

 

  The DDPG utilizes a stochastic policy for action exploration, but the target policy for 

action is deterministic. It updates the parameters of the actor 𝜃𝑎 and the critic 𝜃𝑐 in a bi-level 

optimization pattern. The critic uses the Adam optimizer to reduce its loss, which is defined as 

the difference between two sides of the Bellman equation. The weights of  𝜃𝑐 and 𝜃𝑎 can be 

updated with the gradients in the loss function L (Q, 𝜃𝑐) and L (π, 𝜃𝑎), which can be expressed 

as Temporal Difference (TD) error: 

 

𝜃𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜃𝑐  𝑄𝜃𝑐(𝑠, 𝑎) − (𝑟(𝑠, 𝑎) + 𝑄𝜃𝑐(𝑠′, 𝜋(𝑠′)))          (2) 

𝐿(𝑄, 𝜃𝑐) =
∑ (𝜃𝑐)2𝑁

1

𝑁sample
                             (3)                                      

𝐿(π, 𝜃𝑎)  = −
∑ 𝑄(𝑠,𝜋𝜃𝑎(𝑠))𝑁

1

𝑁sample 
                         (4) 
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  The weights of  𝜃𝑎 is updated with the deterministic policy gradient: 

 

∇𝜃𝑎=
1

𝑁sample 
∑ ∇𝑎 𝑄𝜃𝑐(𝑠, 𝑎)𝑁

1 |𝑎=𝜋𝜃𝑎(𝑠)∇𝜃𝑎𝜋𝜃𝑎(𝑠)           (5) 

 

  The target actor and critic models are softy replaced by using 𝜏=0.01. Experience replay 

is used to store useful experience and discard useless experience through a reply memory, and 

the memory capacity is set to 30000 for the agent to sample. This research uses light-weight 

neural networks for both the actor and the critic with two layers, and each layer has 30 neurons. 

The batch size is set to 32, the learning rate of the actor is 0.0001 and the critic is 0.0002. The 

Adam optimizer is used to adapt the learning rate for each weight of the neural network. The 

actor 𝜃𝑎 and critic 𝜃𝑐 can be expressed by: 

 

ℎ𝑡
𝑎 = 𝑟𝑒𝑙𝑢(𝑊1

𝑎 + 𝑏1
𝑎)                        (6) 

𝑎𝑡 = 𝐴 ∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊2
𝑎ℎ𝑡

𝑎 + 𝑏2
𝑎)                    (7) 

ℎ𝑡
𝑐 = 𝑟𝑒𝑙𝑢(𝑊𝑠

𝑐𝑠𝑡 + 𝑊𝑎
𝑐𝑎𝑡 + 𝑏1

𝑐)                   (8) 

𝑄𝑡 = 𝑊2
𝑐ℎ𝑡

𝑐 + 𝑏2
𝑐                         (9) 

 

Where state dimension S is 10, action dimension A is 6, the parameters for each network 

is 𝑊1
𝑎, 𝑊𝑠

𝑐  ∈ 𝑅30∗10 , 𝑊2
𝑎, 𝑊2

𝑐 ∈ 𝑅1∗30 , 𝑏1
𝑎, 𝑏1

𝑐 ∈ 𝑅30 , 𝑏2
𝑎, 𝑏2

𝑐 ∈ 𝑅1 , relu and sigmoid are 

utilized as activate function. All hyperparameters in this work were fine-tuned after many trials. 

The steps of the DDPG algorithm for DSH are summarized as follows: 

 

Step 1: Initialize parameters and set target weights for the actor network 𝜃𝑎 and the 

critic network 𝜃𝑐. Then empty the replay buffer. 

Step 2: Load the environment and observe state s. Repeat steps 2 to 6 until the episode 

reaches its maximum. 

Step 3: During time steps in the simulation, explore action a based on the current policy π, 

and execute the noise decay. 

Step 4: Select variable speed limits, receive reward r and new state s’. Store this MDP in 

the reply buffer. 

Step 5: Randomly sample a batch of transitions from the reply buffer, computer the target 

function Q.  

Step 6: Update the Q function by minimizing the L (Q, 𝜃𝑐), update the policy with the 

deterministic policy gradient ∇𝜃𝑎 

Step 7: Update target actor 𝜃𝑎 and critic 𝜃𝑎 networks by 𝜏𝜃𝑎 + (1 − 𝜏)�̇�𝑎 and 𝜏𝜃𝑐 +

(1 − 𝜏)�̇�𝑐 until convergence. 
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3.3 Case study  

3.3.1 Roadway Configuration and Traffic Scenario  

  A 1.4-mile freeway segment of I-80 northbound in District 4 of California, U.S. is 

selected. The length of the on- and off-ramp is 600 feet and 1100 feet, respectively. The weaving 

area between the on- and off-ramp is about 2100 feet, which is not abundant space, and 

congestion can easily occur during peak hours. The original speed limit for the mainline traffic is 

65 mph, and 50 mph for both the on- and off-ramps, respectively. 

 

   Figure 4 shows the traffic states in the study area on one weekday, and the traffic direction 

of northbound is from northeast to southwest. The weaving area is located near the real 

changeable message sign. The traffic was still free-flow at 6 am, and there was light congestion 

starting at 7 am. It reached the worst state at 8 am, the average speed upstream was even lower 

than 40 mph, and the data obtained from the Caltrans Performance Measurement System (PeMS) 

showed that it was actually only 20 mph. The congestion was not able to dissipate until 9 am, 

and it returned to the normal state at 10 am. It can be found that though there is a changeable 

message sign in reality, the current measures cannot relieve congestion.  

 

 
Figure 4. Traffic States in the Study Area (Source: PeMS) 

 

3.3.2 Experimental Settings in the Simulation 

The data source is from the PeMS for generating the traffic demand set by the detector 

data that were collected from the stations. The OpenStreetMap (OSM) is used to export the 

network in the simulation. Each simulation lasts for 4 h from 6 am to 10 am, and the demand is 

randomly generated for each round. There are three routes: mainline to mainline [4587, 4194, 

4440, 4249], mainline to off-ramp [1529, 1398, 1480, 1416], and on-ramp to mainline [461, 771, 

888, 744], in which the values in square brackets are the average value of the Poisson 

distribution for the demand. The proposed DSH algorithm is implemented in the Simulation of 

Urban Mobility (SUMO), which is an open-access simulation tool that provides an API - Traffic 

Control Interface (TraCI) package. To model the mixed flow, this study defines two types of 

vehicles. The Krauss car-following model is used to model HDVs. Given the compliance rate of 
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HDVs, the driver imperfection is set to 0.5, which means that half of HDVs will not comply with 

the display speed limits. The Intelligent Driver Model (IDM) car-following model is used to 

model CAVs. Considering the different features of mixed vehicles, the headway is set 1.1 s for 

HDVs and 0.9 s for CAVs, respectively. The values of all the parameters are adapted from 

Treiber, Hennecke, and Helbing (2000), Hua and Fan (2022). The maximum acceleration rate 

equals 0.73 m/s2, comfortable deceleration rate equals 1.67 m/s2, desired velocity equals the 

speed limit, acceleration exponent equals 4, linear jam gap equals 2 m, and non-linear jam gap 

equals 3 m. Due to the fact that this study mainly focuses on the mainline longitudinal control, 

the lang-changing model uses the default LC2013 in SUMO. To investigate the effects of DSH in 

mixed flow under different Market Penetration Rates (MPRs) of CAVs, the MPRs range from 0% 

to 100% with an increment of 25%. This study mainly utilizes the built-in parameters in SUMO, 

and more details related to the calibration of the micro-simulation model, involving the 

autonomous vehicles’ adaptive cruise motion can be found in Silgu et al. (2021), Sadat and 

Celikoglu (2017), and Göksu et al. (2021). 

 

   Figure 5 demonstrates how DSH is implemented in SUMO. The traffic direction is from 

right to left, and the mainline section has 4 lanes and the weaving area has 5 lanes. The state 

dimension is 10, including 4 lanes in the upstream mainline, 5 lanes in the downstream weaving 

area, and 1 lane in the on-ramp. The OSM and traffic demand are the inputs of the simulation. 

The same environment is built in SUMO, and there are a series of induction loop detectors (red 

arrow) distributed through the freeway segment. The VSL controller will select a speed limit 

based on the current policy, and the action dimension is 6 from 50 to 75 mph with an increment 

of 5 mph. Then, it executes the DDPG algorithm, and the output by TraCI will update the reward 

to the optimal value. The detectors also provide the average speed at the upstream, midstream, 

and downstream of the weaving area. 
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3.4 Results and Discussions 

3.4.1 Learning Process of DRL Agents  

  Figure 6 shows the cumulative rewards under different MPRs that are trained by 300 

episodes. The reward achieved by no control (dash line) is expressed as the average value with 

various level of MPRs. Except in the case of pure HDV (0% MPR), the others’ starting values 

are relatively low, but the learning curves afterward are roughly the same. It can be found that 

the VSL controller hardly learns useful experience before 130 episodes, and it hovers in a small 

range. The cumulative reward reaches its first peak around the 135th episode as more experience 

is learned. Later, more useful information is extracted, reaching the highest value in the 180th 

episode. After 200 episodes, the learning process has gradually stabilized and the reward has 

been greatly improved compared to the beginning of the implementation of DSH. More details 

about the difference under various MPRs will be discussed subsequently. Compared with DQN, 

the DDPG algorithm based on actor-critic architecture is more difficult to converge. It may not 

learn anything at the beginning, but it still can reach the optimal value in the end. 

Figure 5. Environment Configuration of DSH in SUMO 
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3.4.2 Synergistic Evaluation of MOEs  

The application of CAVs cannot only be assessed from a single perspective, and a 

comprehensive MOEs evaluation can better understand co-benefits and trade-offs between 

indicators. Each set of numerical experiments compares the average operational performances 

over 20 test episodes. The consideration of computing time is also an important part to reflect the 

efficiency of the algorithm. The average time for each episode under different MPRs before DSH 

is 153 s, and the time cost after DSH is only 156.8 s. Table 6 shows the operational performances 

under different MPRs of CAVs. MOEs mainly consider three aspects: a) safety issues 

represented by accumulated emergency deceleration; b) mobility issues represented by Mean 

Travel Time (MTT); and c) environmental sustainability issues represented by greenhouse gas 

(GHG) with CO2, harmful gas with CO, and fuel consumption. The comparison is based on no 

control without CAVs under each indicator.  

 

Table 6. Operational Performances Between DSH and No Control 

MOEs Indicators Control 
Improvement by MPRs (%) 

0% 25% 50% 75% 100% 

Figure 6. Cumulative Rewards During the Learning Process 
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Safety 

Accumulated 

emergency 

deceleration(m/s2) (107)  

No 1.63 0.14% -0.11% -0.08% 0.41% 

DSH 
5.02% 4.96% 4.46% 4.24% 4.96% 

Mobility Mean Travel Time(s) 
No 82.48 0.18% -0.05% 0.12% 0.75% 

DSH 5.21% 4.92% 4.50% 4.55% 4.62% 

Environmental 

Sustainability 

CO2 (kg): 
No 10009.3 5.74% 11.36% 16.70% 21.45% 

DSH -9.51% -1.76% 5.12% 10.84% 15.39% 

CO (kg): 
No 151.96 10.47% 20.46% 29.89% 36.27% 

DSH -20.22% -7.24% 4.23% 13.61% 21.17% 

Fuel consumption (L): 
No 4302.53 5.74% 11.36% 16.70% 21.44% 

DSH -9.51% -1.76% 5.12% 10.84% 15.39% 

 

In terms of safety, there is no significant improvement with or without control in the early 

stages (25% MPR) of CAVs implementation. There is a slight risk increase associated with more 

CAVs, and this phenomenon persists to higher MPRs. A possible reason is that CAVs prefer to 

adopting a more aggressive way considering smaller headway when interacting with HDVs. 

Maybe this phenomenon can be mitigated and performance can be further improved by 

introducing the platoon control of CAVs. This interaction is not obvious in lower MPRs, but is 

intensified with the increase of CAVs, fortunately, the increased risk is modest. When the road 

network is full of CAVs (100% MPR), the safety is improved again (0.41% for no control and 

4.96% for DSH). Moreover, applying DSH can mitigate the detrimental effect of low CAV shares 

on safety (nearly 5% improvement). The co-benefits after DSH can be found in the mobility. It 

can be seen that, compared with no control, MTT has been improved to varying degrees (all 

above 4%). MTT increases slightly at 50% MPR, but it is still within an acceptable range.  

 

From the environmental sustainability perspective, CO2 emissions continue to decrease 

with the increase of CAVs under no control, and an improvement of 21.45% can be achieved at 

100% CAVs. For DSH, the emission of greenhouse gases increases under a 25% MPR. However, 

when more CAVs are deployed, this situation is alleviated and finally reaches an enhancement 

level of 15.39%. The same changes can be found in fuel consumption, which reveals a clear 

connection with CO2 emissions. In fact, using either one can reflect the impact on the 

environment. For the emission of harmful gases, CO is mainly selected due to the proportion of 

CO exceeding 96% in the simulation. This is much higher than other gases such as hydrocarbons, 

NOX, and PMX. Regarding the performance before and after DSH under different MPRs, the 

change of the harmful gas is similar to that of greenhouse gas. Although the DSH has an overall 

positive impact on safety and mobility, there are trade-offs with environmental sustainability. 

Actually, a certain difference can be observed between the outflow and inflow during the 

congestion phase. It is known that the introduction of CAVs can increase the throughput, but the 

DSH has learnt to assign lower speed limits during the congestion to ensure the safety. Therefore, 

there will be a balance between them. However, the impact of the fluctuations will eventually be 

offset, and the overall performance will be improved. 
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3.4.3 Spatiotemporal Variations of Bottleneck Speed  

Figure 7 demonstrates the spatiotemporal changes of the average speed at the weaving 

area after DSH. The U denotes the upstream section (which is close to the off-ramp), the M 

represents the midstream section, and the D is the downstream section that is near the on-ramp. 

For each case, there are three sections on the vertical axis, and each section is divided into 5 

lanes, with a total of 15 rows. The upper of the lane, the closer to the ramp, and the right lane is 

defined as the outermost lane, and vice versa. The 4-hour simulation time is divided into 48 

intervals every 5 minutes. In all cases, the VSL controller has learned to assign differential speed 

limits to each lane, so that the vehicle can travel within the specified speed. 

 

Figure 7. Speed Variations by Time-of-Day Under Different MPRs. (a) 0%, (b) 25%, (c) 50%, (d) 

75%, (e) 100% 

 

With regard to the upstream section, there is a small fluctuation in the right two lanes 

under low MPRs (<50%) at intervals during the congestion formation phase (6-7 am). This is 
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because the outer side needs to go down the ramp, and the disturbance caused by the deceleration 

will have an impact on the traffic flow stability. At higher MPRs, though, the speed variations 

become smaller. These two phenomena are also observed when congestion occurs (7-9 am) and 

dissipates (9-10 am), indicating that more CAVs powered by DSH can play a role in reducing 

speed variability during the deceleration process. For the middle two lanes, there is a slight speed 

oscillation due to the influence of the outer lanes, and this instability increases with the increase 

of MPRs. However, vehicles are still able to operate at a high speed. For the innermost lane, the 

agent always gives the highest speed limit regardless of the MPRs, and the highest speed can 

reach 71.9 mph. In fact, at any position of the weaving area, the innermost lane is not affected by 

other lanes owing to the differential speed limits, which means that the agent can recognize the 

leftmost lane and set it as the overtaking lane. 

 

Concerning the midstream section, the right lane always suffers more severe speed 

oscillations due to the insufficient length of the weaving area, but the DSH can dampen speed 

variations under higher MPRs (>75%). A minimum of 40 mph is reached at 50% MPR, but it is 

still better than the original 20 mph before the DSH. The middle and the left lanes perform 

similarly to the situations in the upstream section. 

 

As for the downstream section, the outer two lanes always show relatively larger speed 

variations during the congestion formation phase. Because this location is closest to the on-ramp, 

vehicles need to accelerate to match the mainline traffic, but the insertion of vehicles will disturb 

the adjacent lanes and the continuous lane change will affect the middle lane as well until it 

moves to the leftmost lane. However, during the congestion dissipation phase, the speed 

variations in the outer lane are alleviated with the increase of MPRs and the middle lane also 

benefits. During the congestion phase, the left two lanes are hardly affected all the way. The right 

three lanes encounter the most unstable situation compared to the upstream condition, indicating 

that the merging process causes more impact than the diverging process. 

3.4.4 Sensitivity Analysis of CAVs Performance 
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While this study is based on the simulation, the real-world traffic flow may encounter 

more randomness and uncertainty. However, it is impractical to test in reality considering the 

cost. The operability of simulation allows us to explore the effects of parameters on vehicle 

control in different environments. The improvement of CAVs over MOEs is mainly attributed to 

the reduction of headway. The relatively conservative values of 1.1s for HDVs and 0.9s for 

CAVs are chosen to avoid the degradation of safety due to the large variation in headway, which 

makes the difference less pronounced at different MPRs. In fact, the headway can be reduced to 

0.6s for higher-level CAVs. To investigate the sensitivity of MOEs to headway, this section only 

changes the headway from 0.9s to 0.6s while other variables remain fixed. Figure 8 illustrates the 

MOEs before and after DSH under the smaller headway. The three most representative metrics 

are selected: accumulated emergency decelerations for safety, MTT for mobility, and CO2 

emissions for sustainability. The colored bars denote the MOEs under the new headway. It is 

worth noting that the percentage changes in each MPR show the corresponding improvement 

before and after DSH compared to 0.9s. 

 

Figure 8. MOEs Changes and Comparisons Under the Smaller Headway. (a) Safety, (b) Mobility, 

(c) Sustainability 
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The change in the histogram shows that under the new headway, regardless of the before 

and after control, the trend in each indicator displays a roughly linear decrease with the increase 

in MPRs and is more stable. For the original headway, though, the changes in safety and mobility 

are not uniform and not distinct among MPRs, except for sustainability. This indicates that the 

performance of higher-level CAVs is more influenced by MPRs and the whole change process 

will be smoother. Indeed, when the gap between the headway of HDVs and CAVs increases, 

MPRs have more effects on MOEs, but too large a gap may lead to disturbances in the overall 

traffic flow and affect stability. The percentage changes show that the MOEs are further 

promoted by the higher-level CAVs compared to the original headway, and the safety 

improvements are approximately the same before and after control at lower MPRs (< 50%), but 

the enhancements before control are more significant at higher MPRs. The performance after 

DSH may be close to the limit, which is difficult to further improve. The same phenomenon 

occurs for the mobility, while the improvements in sustainability are not as obvious as them at 

higher MPRs. The above suggests that DSH powered by higher levels of CAVs can play a role in 

amplifying most MOEs depending on the pace of technology development and deployment. 
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Chapter 4. Safety-oriented Dynamic Speed Harmonization at 

Nonrecurrent Bottleneck 

4.1 Introduction 

Optimizing traffic flow within congested areas poses a critical challenge in the 

transportation field. Congestion at the bottleneck emerges when the upstream demand exceeds 

the design capacity of the downstream roadway segment (Ghiasi et al., 2019), leading to 

heightened collision risks, prolonged travel times, and reduced fuel efficiency. This situation can 

be exacerbated by interruptions in traffic flow or sudden fluctuations in traffic volume. The 

Federal Highway Administration reported various types of congestion in the United States by 

their causes, revealing that 55% of congestion is attributed to nonrecurrent situations, including 

25% incidents, 15% adverse weather, 10% work zones, and 5% special events. The remaining 45% 

of congestion falls under the recurrent scenarios, comprising 40% daily bottlenecks, and 5% poor 

signal timing. 

 

Constructing additional road infrastructure is not always a practical solution due to the 

potential for induced traffic demand that could create an undesirable cycle. More effective and 

efficient utilization of existing infrastructure with active traffic management is an alternative 

approach. DSH, also known as VSL, is a widely employed control strategy to dampen traffic 

oscillations and smoothen traffic speed based on current traffic conditions (Ma et al., 2016). DSH 

primarily aims to enhance safety (Lu et al., 2010) by coordinating speeds and reducing their 

variations, mitigating stop-and-go motions and thus lessening crash frequency. DSH achieves 

this by adjusting speed limits displayed on variable message signs to indirectly manage traffic 

flow (Papageorgiou et al., 2008).  

  

Nevertheless, the conventional DSH strategy confronts certain challenges. Firstly, its 

effectiveness is constrained by the low compliance rate of drivers. CAVs can be leveraged to 

facilitate coordinated decisions by employing the Vehicle-to-Everything technology (Talebpour 

et al., 2013). When assessing CAV deployment’s performance, three typical MOEs, including 

Safety, Mobility, and Environmental Sustainability, are commonly used and evaluated through 

various metrics. Most studies conducted in the past focused on one or two MOEs, and only a few 

assessed all three MOEs simultaneously. Additionally, Tian et al. (2018) indicated that 

co-benefits or trade-offs between metrics can be explored. Therefore, a holistic framework needs 

to be established to evaluate MOE interactions (Hua and Fan, 2023). Figure 9 illustrates the 

synergistic performance evaluation framework with respective metrics in this research. Another 

limitation is the necessity of setting differential speed limits across all lanes for safety reasons 

(Khondaker and Kattan, 2015), an aspect less explored in CAV environments. RL and classical 

control models are two distinct approaches to implementing the vehicle speed control. Both 

methods aim to achieve a specific objective such as optimizing traffic flow, or reducing 



 

48 

 

congestion. Also, they involve a feedback loop where the system’s state is observed, which 

allows the controller to take actions in response to changing conditions. While traditional 

methods are well-established in the speed harmonization problem, RL offers advantages in 

model dependency and adaptability. Classical methods often rely on a precise prediction model 

and require traffic dynamics with the fundamental diagram to tune the controller parameters 

(Kušić et al., 2020), which mitigates data efficiency. RL can interact with changing environments 

without explicit traffic dynamics and achieve comparable performance with less prior knowledge. 

In addition, RL can learn optimal control policies by exploration and exploitation of state-action 

space over time, where classical methods might struggle due to the curse of dimensionality. RL is 

particularly beneficial in terms of adaptability and can generalize learned policies to novel and 

unseen situations, making it excel in complex, dynamic, and uncertain scenarios.  

The overall objective of this chapter can be highlighted as follows: a) given the frequency 

of nonrecurrent congestion caused by incidents, a safety-oriented DSH strategy is developed to 

optimize traffic flows. b) a DRL-based controller is designed to dampen speed oscillations and 

smoothen traffic. c) a comprehensive evaluation based on a variety of MOEs is conducted and 

potential interactions between multiple metrics can be found. d) experiments are carried out 

under different MPRs of CAVs, and reveal that CAVs powered by DSH can further improve 

operational performance. e) a series of sensitivity analyses in changing simulated scenarios are 

conducted to help gain deeper insights into the adaptability and generalization of the DRL agent. 

 

   The remainder of this chapter is organized as follows. Section 4.2 introduces the proposed 

DRL method and safety-oriented MOEs. Section 4.3 describes the experimental settings and 

microscopic simulation model. Section 4.4 presents the numerical results and discussions.  

Figure 9. Synergistic Performance Evaluation Framework 
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4.2 Methodology 

4.2.1 DRL Scheme 

DRL is a branch of machine learning that combines RL with deep learning to handle 

complex input spaces. RL is a paradigm where an agent learns to make decisions by interacting 

with an environment through trial and error. The agent takes actions, receives rewards or 

punishments as feedback, and adjusts to maximize cumulative reward over time. Deep learning 

involves the use of neural networks, which are composed of multiple layers of neurons. These 

networks can automatically learn hierarchical representations of state, making them well-suited 

for processing high-dimensional input spaces. However, traditional RL algorithms often 

encounter challenges when dealing with tasks characterized by a multitude of states or 

continuous action spaces. DRL addresses this limitation by using neural networks to approximate 

value functions or policies, allowing for more efficient and scalable learning in intricate and 

extensive environments. In contrast to traditional RL involving hand-engineering features or 

state representations, DRL focuses on end-to-end learning, where the entire learning process is 

integrated into a single, unified system.  

 

In DRL, neural networks are used to approximate value function or policy. The value 

function estimates the expected cumulative reward of being in a certain state-action space. Policy 

determines the mapping from states to actions. DRL algorithms must balance exploration 

(discover new actions) and exploitation (choosing actions based on current knowledge), which is 

crucial for optimal learning to maximize reward. The configurations for the environment, agent, 

state, action, and reward functions are the same as chapter 3. The algorithm chosen to achieve the 

optimal speed limit is also the DDPG. The target actor and critic models are replaced by soft 

updating factor 𝜏=0.01. The agent is trained after 300 episodes to reach a stable and maximal 

reward. A reply memory with a capacity of 20000 is used for the experience replay, which is 

utilized to save useful experiences and dismiss useless experiences. This research employs 

two-layer, lightweight neural networks with 32 neurons per layer for the actor and critic to 

improve the efficiency of the learning process. The batch size is set to 32, the learning rate of the 

actor is 0.0001 and the critic is 0.0002. All hyperparameters are fine-tuned after many trials.  

4.2.2 Surrogate Safety Measurement (SSM) 

   Due to the lack of mass deployment of CAVs in the real world and considering the 

scarcity of crashes, it is not yet feasible to perform safety assessments using historical crash data 

of mixed traffic flow. However, traffic conflicts occur considerably more frequently than car 

crashes. In light of this, SSM derived from traffic conflicts is proposed. Traffic conflicts are 

perceptible non-collision events that raise the collision risk if moving vehicles do not divert from 

their intended path. Traffic conflicts and crashes are thought to be related, and indicators used to 
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quantify the safety effects can be considered as SSM (Wang et al., 2022). Currently, most CAV 

studies involving SSM are conducted in a microscopic simulation environment. 

  

   In the simulation, a vehicle can be equipped with an SSM Device that logs the conflicts of 

participants. The criteria to qualify an encounter as a conflict (if their measurements exceed a 

threshold) can be customized by several generic parameters. The most typical SSM is 

Time-to-Collision (TTC), which was first proposed by Hayward (1972) and defined as “time that 

remains until a crash between two vehicles would have occurred if the crash course and speed 

difference are maintained.” It is given as: 

𝑇𝑇𝐶 =
𝑆𝑝𝑎𝑐𝑒 𝑔𝑎𝑝

𝑆𝑝𝑒𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
                          (10) 

    

  Where the space gap is the distance between the following and leading vehicle minus the 

vehicle length (usually 5 meters). To connect the traffic conflict to the crash directly, the collision 

probability is used to evaluate the possible risk by comparing the calculated TTC and the 

threshold TTC (default value is 3s) shown as: 

 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑇𝐶< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑇𝑇𝐶

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑇𝐶
          (11) 

 

  Different from gauging time proximity, Cooper and Ferguson (1976) proposed 

Deceleration Rate to Avoid the Crash (DRAC) to measure the severity of the conflict. It is 

defined as: 

𝐷𝑅𝐴𝐶 =
0.5∗𝑆𝑝𝑒𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒2

𝑆𝑝𝑒𝑒𝑑 𝑔𝑎𝑝
                      (12) 

 

  Where the default value of DRAC is 3 m/s2, and can be recorded at the time point of the 

maximal value as DRACmax. A modified variant called MDRAC considering a 

Perception-Reaction-Time (PRT, default value: 1s) is defined as:  

 𝑀𝐷𝑅𝐴𝐶 =
0.5∗𝑆𝑝𝑒𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑇𝑇𝐶−𝑃𝑅𝑇
                      (13) 

 

  It is noted that some SSMs only apply to a specific encounter or imply different 

calculation procedures for different encounters. This research is related to the freeway mainline 

control, and only lead/follow situations where vehicles are passing the same sequence of lanes 

before and after the conflict point is considered. 
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4.3 Experimental Settings 

The testbed selects a busy northbound freeway segment located on I-80 in District 4 of 

California, U.S. It is a 1.4 miles long segment including a weaving area between the on- and 

off-ramps, and the length of the on- and off-ramp is 600 feet and 1100 feet. The traffic direction 

is from East to West, and the upstream mainline section has 4 lanes and the downstream weaving 

area has 5 lanes. The speed limit for the mainline is 65 mph, and 50 mph for both on- and 

off-ramps. The Caltrans Performance Measurement System (PeMS) database provides traffic 

parameters collected from roadside stations, and the OpenStreetMap is used to export the 

roadway network for simulation. The imported Map and traffic demand obtained from PeMS 

comprise the input of the simulation. Each simulation lasts for 3 hours from 7 am to 10 am, and 

the demand is randomly generated for each round. The average value for the demand of three 

routes in 3-hour are presented as follows: mainline [4791, 5172, 5045], off-ramp [801, 748, 620], 

and on-ramp [780, 879, 739]. The simulation is conducted in the Simulation of Urban Mobility 

(SUMO), providing an API - Traffic Control Interface (TraCI) package to realize interaction with 

external programs. 

 

Figure 10 demonstrates the implementation of DRL-based DSH in SUMO. The testbed 

configuration is replicated as the environment for the DRL controller. E1 induction loop 

detectors (yellow mark with red arrow) are positioned along the segment, and their occupancy 

rates serve as input states. The state dimension is set as 10, including 4 lanes in the upstream 

mainline, 5 lanes in the downstream weaving area, and 1 lane in the on-ramp. In the DRL 

architecture, the agent (DRL controller) managed by the DDPG algorithm receives the state in 

the downstream congestion area, and takes actions (variable speed limits) returned to the 

environment. The action dimension is 6, from 50 to 75 mph with an increment of 5 mph. Then, 

the environment sends a new state decided by a defined policy mapping from the previous state 

and action. The interaction between the environment and the agent is updating the reward 

represented by MOE to the optimal value.  

 

The incident is scheduled to occur at the downstream weaving area after the simulation 

begins. It is modeled by randomly stopping a vehicle for 5–10 min and taking 20 min to clear. 

Two types of vehicles are defined to simulate the mixed flow. The Krauss car-following model 

represents HDVs, with a driver compliance rate set at 0.7 (indicating 30% compliance with 

displayed speed limits). The Intelligent Driver Model (IDM) car-following model represents 

CAVs. Different headways are assigned for HDVs (1.2s) and CAVs (0.6s) based on their 

performance. All parameter values are adapted from previous studies (Hua and Fan, 2022). The 

lang-changing model uses the LC2013 in SUMO. To investigate the effects of DSH in mixed 

flow in various scenarios, a series of experiments are conducted under different traffic demands 

and penetration rates of CAVs. Sensitivity analyses of speed limit decrements in adverse weather 

and threshold of SSMs are also conducted. 
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4.4 Results and Discussions 

4.4.1 Evaluation of MOEs 

The convergence of the cumulative reward during the learning process is shown in Figure 

11. The DRL agent is trained under two situations, with no event and with special events, 

respectively. To test the performance during special events such as sports games and concerts, 

this study inflates the traffic demand of on-ramp by 1.5 times to simulate the traffic fluctuation 

caused by special events. The learning curves for various scenarios exhibit similarities and 

distinctions. Initially, both scenarios struggle to acquire valuable experiences, and the “with 

event” scenario starts from a lower point. However, the “no event” scenario reaches its peak 

around the 75th episode and maintains stability over time. While the “with event” scenario 

experiences two peaks, occurring around the 66th and 125th episodes, and the improvement is 

greater than that of no event at the end of training. Further details regarding the difference in 

terms of MOEs performance will be explored in subsequent discussions. 

 

 

Figure 10. Simulation Environment 
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Figure 11. The Learning Process of the Agent 

 

The holistic evaluation is done with 20 episodes for each MPR and takes the average 

value of MOE metrics. The time cost for pre- and post- control only increases from 260s to 269s. 

As depicted in Table 7, this study evaluates the MOEs from three aspects: safety represented by 

collision probability and DRAC, mobility represented by Average Travel Time (ATT) and time 

loss, and sustainability represented by greenhouse gas (CO2) and pollutant gas (CO) emission 

(CO is mainly selected due to the fact that the proportion is much higher than others such as 

hydrocarbons, NOX, and PMX), and fuel consumption. To emphasize the effects of CAVs in 

different phases of mixed flow, 10% signifies early-stage deployment, 50% MPR represents 

mid-term adoption, and 90% MPR portrays future expectations. Key findings and potential 

co-benefits between MOEs are highlighted. Table 5.1 compares the performances of agents 

before and after DSH control under different MPRs of CAVs. The case of no control under 10% 

MPR (bold) serves as the baseline. All metrics, except collision probability (expressed as an 

absolute percentage), show enhancements relative to the baseline. 

 

   In no event situation, increased MPR leads to improvements in all MOE metrics, 

regardless of DSH activation. Compared to no control, the implementation of DSH further 

improves safety and mobility while slightly compromising sustainability. Specific to each metric, 

at the same MPR, a co-benefit is found between the collision probability and ATT after DSH. 

The collision probability can be reduced to 9.2%, and ATT can be reduced by 14.63% under 90% 
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MPR. Time loss, a consequence of not achieving optimal speed, diminishes with higher MPR, 

yet DSH has minimal impact at equivalent MPR levels. Sustainability fares well at 10% MPR 

but shows minor increments in emissions and fuel use at higher MPRs. To maximize the 

throughput, the CAVs will adopt a more aggressive way, leading to more severe cumulative 

decelerations and increased emissions. Notably, CO2 emissions and fuel use exhibit a 

synchronous growth pattern. Generally, post-control scenarios outperform the base case with 

manageable emissions, and the safety priority for DSH is guaranteed.  

 

   Compared to no event, the time cost for no control escalates from 260s to 292s due to 

augmented demand. Remarkably, DSH becomes more time-efficient, costing only 293s. 

Concerning MOEs, all metrics demonstrate relatively inferior performance compared to the 

non-event scenario, indicating substantial event-induced traffic impacts. Focusing solely on pre- 

and post-control scenarios, all metrics except cumulative DRACmax improve with increasing 

MPR. This stems from the narrower headway adopted by CAVs, which introduces more vehicles, 

straining capacity and causing frequent deceleration. Unlike the no-event case, this phenomenon 

arises due to the volume nearing design capacity. MOE metric changes mirror those of the 

non-event scenario. The collision probability diminishes to 10.3%, and ATT can be reduced by 

14.56% at 90% MPR after DSH. The increase in emissions is still acceptable. Given the 

protracted timeline for extensive CAV deployment, subsequent experiments will scrutinize 

post-DSH performance in mixed flow at a 50% MPR.  

 

Table 7. Comparisons of Performance Indicators Between No Control and DSH 

    Improvement by percentage (%) 

No event MPR (%) 

Collision 

probability 

(%) 

DRACmax 

Sum (m/s2) 
CO2 (kg) CO (kg) 

Fuel use 

(L): 
ATT (s) 

Average 

time loss 

(s) 

No control 

10% 30.9% 22577 8259 138 3550 90.68 19.26 

50% 23.3% 16.64 15.50 21.23 15.55 5.43 15.90 

90% 15.0% 33.49 23.53 38.10 23.53 9.82 25.00 

DSH 

10% 21.8% 14.54 1.55 2.09 1.55 8.18 0.05 

50% 17.1% 17.44 10.48 16.73 10.48 9.62 15.16 

90% 9.2% 20.43 20.17 28.35 20.17 14.63 23.13 

Special event        

No control 

10% 31.8% 14892 9092 145 3908 94.09 25.81 

50% 24.2% -62.80 11.51 17.16 11.51 6.02 11.48 

90% 13.9% -93.13 21.30 34.42 21.30 12.50 18.90 

DSH 

10% 22.2% -21.87 -4.05 -8.47 -4.05 8.66 1.49 

50% 16.1% -41.68 7.14 8.16 7.14 12.56 7.83 

90% 10.3% -84.39 15.77 19.32 15.77 14.56 19.04 
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4.4.2 Spatiotemporal Pattern of Speed Variations 

   Figure 12 demonstrates the spatiotemporal variations of the bottleneck speed. The z-axis 

of the surface plot is the average speed after DSH, the y-axis is the time of day, and the x-axis is 

the different locations at the bottleneck. The weaving area includes three sections: upstream and 

downstream near the on- and off- ramp, and the midstream portion. Each section is divided into 5 

parts (#1-#5) that align with the five lanes present in the weaving area. #1 denotes the outermost 

lane near the ramp, and #5 denotes the innermost lane which is also the overtaking lane. 

Consequently, three parallel mountain-shaped plots are generated. The smoothness of the 

“mountain” reflects the degree of speed variations, and the flatter means less fluctuation. 

 

From a spatial view, irrespective of location, the DSH controller consistently assigns the 

highest speed limit to the innermost overtaking lane (#5). This lane predominantly maintains 

speeds of around 65-70 mph, occasionally reaching 70 mph (indicated by red points). In contrast, 

speed decreases progressively as lanes approach the ramp. This behavior is motivated by the 

higher susceptibility of vehicles near the ramp, where even minor changes in driving behavior 

can exert pronounced effects on surrounding vehicles. However, even in the most severe 

downstream area, the lowest speed observed remains at 37 mph post-DSH, effectively preventing 

stop-and-go motions. When coupled with the MOE performance discussed earlier, this spatial 

pattern underscores the DSH agent’s capacity to optimally allocate speed limits to various lanes 

based on their congestion levels. The isolation of the overtaking lane from the influence of other 

lanes further corroborates the efficacy of employing differential speed limits to ensure both 

safety and improved traffic flow. 

 

In terms of temporal dimension, the midstream exhibits the least speed variability, 

consistently maintaining speeds exceeding 55 mph. The upstream follows suit, albeit with 

slightly more fluctuations. In contrast, the downstream section experiences the most speed 

variations. Additionally, the middle two lanes (#3 and #4) of each segment are the least affected, 

and the outer two lanes (#1 and #2) suffer the most speed variations. Comparing the conditions 

of the downstream and upstream outermost lanes, it can be seen that under the influence of the 

incident, the diverging process causes more impact than the merging process.  

 

The heatmap in Figure 13 represents the projection of average vehicle speeds in both 

temporal and spatial dimensions, and the standard deviation of speeds is also included. 

Examining the evolving trends of adjacent color gradients over time reveals noteworthy insights. 

In the upstream bottleneck near the on-ramp, lane #4 which is closer to the overtaking lane 

exhibits the minimum standard deviation (0.91), indicating the most stable traffic flow. The 

maximum value (1.51) occurs in lane #2 near the outermost lane, raising safety concerns related 

to lane-changing behaviors during the merging process. Similar to the midstream bottleneck 

situation, lane #4 demonstrates higher stability with a standard deviation of 0.83. However, as 
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vehicles approach the downstream bottleneck, lane #1 in the outermost weaving area experiences 

significant speed oscillations. Throughout the entire period, the maximum value (8.13) is also 

observed where this lane is located near the off-ramp, emphasizing the imperative for 

improvement in this area to enhance safety in later stages. 

Figure 12. Speed Variations by Locations and Time-of-day 
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Figure 13. Spatiotemporal Distribution of Bottleneck Speed 
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4.4.3 Sensitivity Analysis of Speed Decrements 

To delve deeper into the agent’s performance across various scenarios, this study 

introduces simulations of adverse weather conditions by applying different speed limit 

decrements (5 and 10 mph). Adverse weather, such as rain or fog, tends to lead to reduced 

vehicle speeds due to obstructed vision, often resulting in lowered speed limits. While 

CAVs can utilize situational awareness to solve this problem, the effect is compromised by 

the presence of HDVs. Similarly, this section investigates the performance after DSH 

under 50% MPR, and uses the three key metrics to represent safety, mobility, and 

sustainability.  

 

Figure 14 displays the MOEs alterations under varying speed decrements. The 

“normal” denotes driving in clear weather without any speed decrements. At a speed 

decrement of 5mph, the collision probability increases by 4.81%. The spatiotemporal 

pattern also shows that speed variations are more contained at higher speeds. When the 

speed descends significantly below the original speed limit of 65 mph on the mainline (a 

10-mph speed decrement), the effect is further amplified. Correspondingly, CO2 emissions 

also increase as the traffic situation worsens, but the change is not as obvious as that of 

safety. ATT alterations are least prominent at a 5-mph speed decrement with mere 0.32% 

change, but this effect becomes more noticeable with more severe speed reduction. Under 

adverse weather, the sensitivity of mobility changes is comparatively subdued in 

comparison to the impacts on safety and sustainability. 

 

Figure 14. MOEs Changes Under Different Speed Decrements 



 

59 
 

4.4.4 Sensitivity Analysis of SSM Thresholds 

The SSM parameters mentioned above rely on predefined thresholds to identify 

instances of traffic conflicts. It is acknowledged that this approach is both subjectively 

defined and statistically threshold-sensitive. Table 8 illustrates the sensitivity of SSM 

thresholds and how they reflect in the TTC-related collision probability. The first row (bold) 

is the baseline under 50% MPR after implementing the DSH strategy with the default value 

from the simulation.  

  

Compared to the base, Perception-Reaction-Time (PRT) has the highest sensitivity. 

The collision probability increases as the PRT increases, but this effect saturates after more 

than 2s. The Deceleration Rate to Avoid the Crash (DRAC) becomes more obvious at a 

lower value, and it is not significant enough when it exceeds 3m/s2. The range denotes the 

device’s detection range in meters, and other vehicles are tracked when they are closer than 

a threshold to the equipped vehicle. A tree search is performed to find all vehicles close to 

the vehicle’s current position. The sensitivity amplifies when more vehicles are identified 

within this range. The extra time expresses the time an encounter is tracked after not being 

associated with a potential conflict (ceases when a vehicle departs from a common route, 

crosses the conflict area, changes lanes, or exits the detection range, etc.). Again, this 

parameter primarily affects safety at higher threshold levels. 

 

Table 8. Safety Changes Under Different SSM Thresholds 

 

  

Collision probability change (%) 

DRAC=3m/s2 Prt=1s  Range=50m Extra time=5s 

2s 0.94% 2s 2.83% 20m -0.13% 4s 0.06% 

4s -0.17% 3s 2.56% 80m -1.17% 6s -1.62% 
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Chapter 5. Extension of DSH Strategy 

5.1 Introduction 

The growing travel demand, coupled with a nearly stagnant infrastructure supply 

has significantly worsened traffic congestion. The negative impacts include increased 

collision risk, longer travel time, excessive fuel usage, Greenhouse Gas (GHG) emissions, 

and pollution (Tian et al., 2018). Each year more than 6 million crashes occur in the U.S., 

about 31,000 highway fatalities (Hughes et al.,2023). Around 9 billion hours of travel 

delay across the nation yearly, equating to $192 billion congestion cost (Schrank et al., 

2015). Over 56 billion pounds of additional CO2 are produced every year, which means 3.2 

billion gallons of wasted fuel (Eisele et al., 2014). 

 

Compared to expanding additional motorways, utilizing existing infrastructure with 

active traffic management is a cost-effective approach. Dynamic Speed Harmonization 

(DSH), also known as Variable Speed Limit (VSL), is a mature control strategy to stabilize 

traffic flow (Ma et al., 2016). It can be applied by adjusting speed limits shown on variable 

message signs (VMS) based on current conditions in the downstream bottleneck 

(Papageorgiou et al., 2008). In this way, speed oscillations resulting from the upstream 

propagation of shock waves are dampened, and a smoother transition of upcoming traffic 

can be achieved (Kušić et al., 2020). 

 

However, low compliance rates of drivers restrict the effectiveness of this technique 

to a great extent. Emerging technologies such as Connected and Automated Vehicles 

(CAVs) provide potentially cutting-edge solutions to improve various Measures of 

Effectiveness (MOEs) (Wang et al., 2016; Hua and Fan, 2023). With the advancement of 

Vehicle-to-Everything (V2X) communication technology and automation, CAVs are 

anticipated to completely comply with the control system and have no information delay. 

Before the large-scale deployment of CAVs considering the public acceptance, the mixed 

traffic involves Human-Driven Vehicles (HDVs) and CAVs will exist in the long term (Li 

et al., 2022). Therefore, an efficient integration of the DSH technique and CAV technology 

to optimize freeway operations becomes a critical transportation issue. 

 

Since field tests or on-road practice are costly and might lead to unforeseen and 

severe effects on existing traffic if implemented incorrectly, the simulation-based method 

has gained popularity (Lu and Shladover, 2014). Traditional control logic often exhibits a 

noticeable reaction delay, the traffic breakdown may already appear when DSH is activated 

(Malikopoulos et al., 2018). In contrast, the proactive method allows for taking measures 

promptly (Khondaker and Kattan, 2015). However, it highly depends on an accurate 

macroscopic prediction model and cannot reflect disturbances in driving behaviors. Instead, 

Deep Reinforcement Learning (DRL) can adapt to traffic dynamics without the explicit 

model, it does not rely on the fundamental diagram to tune the controller (Lu et al., 2023; 
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Hua and Fan, 2024). Compared to the Single-Agent Reinforcement Learning (SARL) 

system, the distributed multi-agent system (MARL) can be employed flexibly without 

concern for the breakdown of the central controller. Using agents to work simultaneously 

can obtain a better coordination effect (Wang et al., 2019). 

 

To address the aforementioned limitations, this chapter investigates the effects of 

MARL-based DSH strategy in mixed traffic on the freeway. The main points are as follows: 

(a) to prevent getting stuck in local optimization, a Multi-Agent Dynamic Speed 

Harmonization (MADSH) system is developed; (b) a lane-based strategy is considered to 

verify the feasibility of setting differential speed limits for each lane; (c) the impacts on 

safety, mobility, and sustainability, and interactions between MOEs are quantified through 

a holistic evaluation; (d) to thoroughly comprehend how CAVs improve the operational 

performance, effects of CAVs at varying Market Penetration Rates (MPRs) are explored; 

and (e) sensitivity analysis under multiple traffic scenarios is conducted to test the 

adaptation of the model. This study provides essential insights to foster a deeper 

understanding of the transformative potential of the CAV-powered DSH technique in 

promoting intelligent transportation systems. 

 

  The structure of this chapter is as follows: Section 5.2 introduces the proposed 

MADSH framework. Section 5.3 describes the experimental settings and microscopic 

simulation platform. Section 5.4 presents the numerical results and discussions. 

 

5.2 Methodology 

5.2.1 Proposed Framework 

A MADSH system can be defined as: “a group of intelligent, interacting agents 

using speed harmonization on a managed freeway segment.” Within this landscape, two 

noteworthy points stand out: robustness of agents to learn the system dynamics, and 

adaptation to other agents’ evolving action (Busoniu et al., 2008). Therefore, the 

coordination between multiple agents should be guaranteed. Figure 15 demonstrates the 

lane-based MADSH system in this research. When the traffic demand exceeds the freeway 

capacity, the merging and diverging behaviors that occur in the weaving area will result in 

a downstream bottleneck. The downstream detector on each lane collects the congestion 

information and sends it to the Transportation Management Center (TMC). The TMC then 

activates the predefined MADSH strategy embedded in the controllers to optimize the 

traffic flow of the control section. To facilitate the implementation of the system, the 

Roadside Units (RSU) along the freeway and the VMS in the gantry display the optimal 

speed limits derived from the controllers. The RSUs transmit information to CAVs through 

Infrastructure-to-Vehicle (I2V) communication, and CAVs execute the control commands 

automatically. The CAVs within the communication range exchange their vehicular 
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information via Vehicle-to-Vehicle (V2V) communication. The VMS on each lane provides 

the information for the HDVs. This research assumes that there is no communication delay 

or information loss during the control period. 

 

Different from the previous DSH technique, which divided an entire freeway 

segment longitudinally into multiple consecutive sections, this study considers a 

lane-based control strategy, which divides the control section latitudinally into parallel 

segments based on the number of lanes. Setting a homogeneous and synchronized speed 

limit across all lanes is inefficient. When two traffic flows interfere on the outer lane in the 

weaving area, the innermost overtaking lane is actually not affected. Shi and Liu (2019) 

have revealed that implementing a differential variable speed limit on each lane can 

mitigate the speed variations triggered by slow-moving vehicles occupying any lane, and 

ensure safety and mobility. 

Figure 15. Scheme of MADSH Control System 



 

63 
 

5.2.2 MARL Formulation 

The MARL-based DSH issue can be formalized as an N-agent interacting Markov 

decision process. In the lane-based strategy, the controller on each lane acts as an agent. 

The quantity and serial number of the agents correspond to the number and sequence of 

lanes. MARL extends the standard RL paradigm with multiple agents, the MARL can be 

defined as a tuple (S, A, P, R, N), where S represents a set of local states s, the global state 

composed of the local states perceived by all agents, A denotes a set of actions a, P is the 

transition probability from the last step a in s based on policy π that leads to next state s’, R 

is the reward with a discount factor γ  from 0 to 1 for the agent after the transition, and N 

denotes the number of agents. The goal of each agent is to learn a π that maximizes its own 

cumulative reward. It is hard to achieve a common goal with maximum individual rewards 

when agents cooperate with each other. The configurations of state, action, and reward 

function are the same as previous settings. 

 

Two main categories are applicable to classify MARL algorithms: centralized and 

decentralized learning. The centralized algorithms transform the MARL into a single-agent 

problem that is usually inefficient considering the large state-action space. The 

decentralized algorithms are limited due to the non-stationarity issue (Sunehag et al., 2017). 

The Centralized Training and Decentralized Execution (CTDE) framework has been paid 

more attention. The centralized training enables each agent to evaluate the policies of other 

agents, and the non-stationarity problem caused by the learning dynamics of other agents 

can be mitigated. The decentralized execution allows each agent to separately take actions 

based on its local observations. The robustness and adaptation of algorithms can be 

ensured in this way. 

 

This study employs the MADDPG (Multi-Agent Deep Deterministic Policy 

Gradient) algorithm (Lowe et al., 2017) for a strategy solution. By considering the 

behaviors of other agents, MADDPG improves coordination among agents. It is designed 

to handle environments where agents have partial observability, and is well-suited for 

continuous action spaces where precise control is necessary. This makes it applicable to a 

wide range of real-world problems. The π is built on an Actor-Critic architecture that 

provides both value- and policy-based function approximation in the deep neural networks. 

The actor network generates action based on the local state and its own policy. When all 

agents have executed actions, the environment returns a reward to each agent. The critic 

network evaluates the action according to the global state of all agents. Then, the 

experience is stored in the replay buffer to support sampling. Each agent will take a 

mini-batch of samples to update the parameters of the online actor network 𝜃𝜇, critic 

network 𝜃𝑐, and corresponding target actor network 𝜃𝜇′, critic network 𝜃𝑐′. During the 

training process, each 𝜃𝑐 is updated by minimizing the Temporal Difference error: 

 

𝐿(𝜃𝑖
𝑐) = 𝐸𝑠, 𝑠′,𝑎,𝑟[(𝑄𝑖

𝑐(𝑠, 𝑎|𝜃𝑖
𝑐 − 𝑦)2]                 (14) 
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𝑦 = 𝑟𝑖 + 𝛾𝑄𝑖
𝑐′

(𝑠′, 𝜇𝑖
′(𝑠𝑖|𝜃𝑖

𝜇′

)|
𝑎𝑖

′=𝜃𝑖
𝑐′

(𝑠𝑖
′)

               (15) 

 

      The weights of 𝜃𝜇 can be updated by taking the deterministic policy gradient: 

 

∇𝜃𝜇=
1

𝑁sample 
∑ ∇𝑎𝑖

𝑄𝑖
𝑐(𝑠, 𝑎|𝜃𝑖

𝑐)𝑁
1 |𝑎𝑖=𝜇𝑖(𝑠𝑖)∇𝜃𝑖

𝜇𝜇𝑖(𝑠|𝜃𝑖
𝜇

)|𝑠=𝑠𝑖
     (16) 

   

  The target actor and critic networks are replaced by the “soft updating” factor 

𝜏=0.01. The memory capacity of experience replay is set to 50000. The discount factor γ 

is 0.95. The light-weight deep neural networks with two layers are established, and each 

layer has 64 neurons. The batch size is set to 1024, the learning rate of the actor is 0.001 

and the critic is 0.002. The Adam optimizer is used to adapt the learning rate. The steps of 

the MADDPG algorithm for DSH are summarized as follows: 

 

Step 1: Randomly initialize parameters for the actor network 𝜃𝜇 and the critic 

network 𝜃𝑐 of all agents, and set target weights of  𝜃𝜇′ and 𝜃𝑐′. Then 

empty the replay buffer. 

Step 2: Load the environment and run the simulation with state s. Repeat steps 2 to 

4 until the episode reaches its predefined maximum value. 

Step 3: During time lengths in the simulation, each agent i from 1 to N explores 

action a based on the current policy π and noise decay. 

Step 4: Select variable speed limits derived from action a, and observe reward r and 

new state s’ of the local lane. Store the useful experience in the reply buffer. 

Step 5: For each agent i from 1 to N, randomly sample a mini-batch of transitions 

from the reply buffer. Update the critic network by the loss function (6.1). 

Update the actor network by the Equation (6.3). 

Step 6: For each agent, update the target actor 𝜃𝜇,
 and critic 𝜃𝑐′

networks by 

𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′
 and 𝜏𝜃𝑐 + (1 − 𝜏)𝜃𝑐′

 until convergence. 

 

5.3 Experimental Settings 

  The study site is the same as previous chapters. Each simulation lasts for 4 hours in 

the peak-hour morning, and the control cycle is set to 60s. To truly reflect the dynamics of 

real traffic flow, the demand is stochastically generated for each round. Two types of 

vehicles are defined to model the mixed flow. The Krauss car-following model is used to 

simulate HDVs, with a 70% driver compliance rate. The IDM car-following model is used 

for simulating CAVs, assuming perfectly comply with the system. The headway is set as 

1.2 s for HDVs and 0.9 s for CAVs considering their features and performances (Treiber et 

al., 2000; Hua and Fan, 2022). The lang-changing model uses the default LC2013 in 

SUMO. Three MPRs are set to investigate the effects of CAVs at different deployment 
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stages, which 10% signifies early-stage adoption, 50% represents mid-term deployment, 

and 90% portrays future expectations. 

 

To quantify the performance on safety, mobility, and sustainability, a series of MOE 

metrics are evaluated. It consists of safety represented by collision probability, mobility 

represented by Average Travel Time (ATT), and sustainability represented by main GHG 

(CO2) and pollutant emission (CO is selected due to the much higher proportion), and fuel 

consumption. The mobility metrics can be directly derived from the output of the 

simulation. To measure the sustainability metrics, this study uses the Handbook Emission 

Factors for Road Transport version 3 (HBEFA3) model. It is suitable for a 

gasoline-powered Euro norm 4-passenger car. Emission factors are provided for CO2, CO, 

NOx, PMx, HC, and fuel consumption by computing weighted value per vehicle type, 

emission stage, fuel type, or sub-segment (= vehicle type/size class/emission stage) and 

traffic situation.  

 

5.4 Results and Discussions 

To evaluate the effectiveness of the proposed strategy, this study compares it with 

two baselines. (1) no control, in which there is no DSH activated the whole period, and 

each vehicle runs within the original speed limit, (2) SADSH, in which only one controller 

is managing the whole control section. The components of RL in single-agent are 

consistent with MADSH. Figure 16 displays the cumulative rewards of baselines and the 

proposed method under 50% MPR after 500 episodes of training. The initial values of both 

DSHs are comparatively lower than no control, however, the subsequent learning curves 

experience a significant enhancement. It is discovered that the agents stay in a narrow range 

and seldom gain any valuable experience before 73 episodes for MADSH and 127 episodes 

for SADSH. As more experience is learned, the reward of SADSH hits its first peak 

approximately 140 episodes. When more useful information is extracted, reaching the 

maximum value in the 217th episode, there is not any improvement in the following 

learning process. The difference for MADSH is that the turning point occurs earlier than 

that of SADSH, which means that the multi-agent system can capture useful information 

more quickly and make optimizations earlier. More importantly, MADSH can further 

improve the reward based on the single-agent system, which shows that SADSH actually 

falls into local optimization. The highest reward value of MADSH appears in the 307th 

episode, then the learning process progressively stabilizes and no higher value is observed. 
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  To quantify the impacts of the proposed strategy on safety, mobility, and 

sustainability, and interactions between various MOE metrics, a holistic evaluation is 

conducted. Moreover, the effects of CAVs at varying MPRs are explored to thoroughly 

understand how CAVs improve operational performance at different deployment stages. 

The results are displayed in Table 9. 

 

For the safety represented by collision probability, both SADSH and MADSH are 

better than no control at any MPR. Compared with SADSH, MADSH can further reduce 

the risk of collision. In addition, this improvement shows differences under different MPRs. 

In the early deployment stage of CAV, MADSH can reduce the risk to up to 20.7%, which 

is a significant improvement compared to no control. As more CAVs are introduced into 

the network, the collision probability can be reduced to up to 9.2%. However, it is worth 

noting that compared with baselines, MADSH at higher MPR does not improve safety as 

much as in the initial stage. This shows that in the future stages of the development of 

intelligent transportation systems, traffic flow can be optimized solely by relying on the 

performance of CAV itself, and DSH technology will become obsolete. 

 

For mobility, the changes in ATT under different MPRs are not obvious, which 

indicates that depending only on CAV cannot improve operating efficiency. In fact, DSH’s 

primary goal is to ensure safety, sometimes will scarify mobility. Fortunately, 

Figure 16. Learning Process 
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DSH-powered CAV can significantly reduce ATT, and MADSH can further shorten the 

time from approximately 82s to 74s. This also reflects the superiority of the multi-agent 

system. 

 

From the perspective of sustainability, for main GHG emission (CO2 constitutes 

around 26% of all GHGs such as O3, CH4, and N2O), with the increase of MPR, MADSH 

can effectively reduce GHG emissions, which can make 9722 kg at 10% MPR dropped to 

8348 kg at 90% MPR. Interestingly, fuel consumption and CO2 emissions show the same 

changing trend, which reflects that there is a proportional relationship between the two. It 

is worth noting that the use of DSH in mixed traffic flows may result in a slight increase in 

gas emissions. This may be caused by several reasons: (a) Inconsistent Driving Patterns, in 

which the erratic behavior caused by the unpredictability of HDVs can force CAVs to 

adapt constantly, leading to less efficient driving, (b) Suboptimal Traffic Flow, the 

stop-and-go movement by HDVs can disrupt the smooth flow of CAVs, causing CAVs to 

brake and accelerate more frequently, (c) Interaction Dynamics, because CAVs are 

programmed to adopt more conservative driving strategies to ensure safety, while HDVs 

might not respect these gaps or might cut in more aggressively, causing CAVs to frequently 

adjust their speed and lane position, (d) System Limitations, CAVs may need to adapt to 

infrastructure not optimized for mixed traffic or non-communicative vehicles, which can 

hinder the fuel efficiency gains expected in an all-CAV environment. In addition, the same 

changing trend can also be found in the harmful gas CO. 

 

Table 9. The Performance of MOE Metrics 

MPR Control 

Collision 

probability 

(%) 

ATT (s) CO2 (kg): CO (kg): Fuel usage (L): 

10% 

No 31.4% 82.41 9722 144 4179 

SADSH 22.0% 78.30 10573 172 4545 

MADSH 20.7% 74.39 10150 165 4363 

50% 

No 23.8% 82.52 8871 120 3814 

SADSH 16.6% 78.77 9497 145 4082 

MADSH 15.6% 74.83 9117 139 3919 

90% 

No 14.5% 82.12 8100 101 3482 

SADSH 9.8% 78.70 8696 125 3738 

MADSH 9.2% 74.77 8348 120 3589 
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Chapter 6. Summary and Conclusions 

6.1 Conclusions 

In the vicinity of weaving areas, freeway congestion is nearly unavoidable due to 

their negative effects on the continuous freeway mainline flow. The adverse impacts 

include increased collision risks, extended travel time, and excessive emissions and fuel 

consumption. DSH has the potential to dampen traffic oscillation during congestion. 

However, the effectiveness of this strategy is typically limited by the low compliance rates 

of drivers and delays in information access. CAVs are introduced as part of the intelligent 

transportation systems to enhance a variety of MOEs. This research investigates the effects 

of DSH in mixed traffic flow involving HDVs and CAVs on the freeway. The main 

contributions are as follows: (a) a MADSH system is developed, (b) a lane-based strategy 

is considered to verify the feasibility of setting differential speed limits for each lane, (c) 

the impacts on safety, mobility, and sustainability, and interactions between MOEs are 

quantified through a holistic evaluation, (d) to thoroughly comprehend how CAVs improve 

the operational performance, effects of CAVs at varying MPRs are explored, (e) sensitivity 

analysis under multiple traffic scenarios is conducted to test the adaptation of the model. 

This study provides essential insights to foster a deeper understanding of the 

transformative potential of the CAV-powered DSH technique in promoting intelligent 

transportation systems. 

 

The results show that the suggested approach can improve safety and freeway 

mobility during recurrent congestion, while also enhancing environmental sustainability at 

higher MPRs. The bottleneck speed’s spatiotemporal characteristics demonstrate how DSH 

driven by CAVs might lessen speed variations in particular regions. Headway sensitivity 

indicates that high-level CAVs can improve performance substantially. As MPRs increase, 

the technique can improve safety and mobility for nonrecurrent congestion. Although 

special events might worsen congestion, their impact can be partially mitigated through 

speed controls. Spatiotemporal patterns of speed variations show how the controller can 

lessen oscillations and improve traffic flow. Sensitivity analyses also show how the agent 

responds to varying parametric thresholds and how flexible it is in inclement weather. 

Moreover, the application of MADSH system can prevent the proposed strategy falling 

into local optimization.  

 

6.2 Future Work 

Future directions can be devoted to the following aspects: (a) the effect of road 

configuration on the performance, such as the length of weaving area and control section 

deserves more attention, and the position and length of the control area can also be 

optimized; (b) in addition to the headway, there are other parameters describing the 

characteristics of the vehicle can be investigated, and mixed flow with trucks can also be 
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considered; c) the transferability of SSM considering the features of HDV and CAV, and a 

universal set of indicators is highly needed to evaluate the transportation safety in mixed 

traffic flow environment; (d) more abundant state representation of RL such as the 

trajectory data can be considered to better describe the traffic situation; (e) the 

explainability of the model should be explored by combining RL with other advanced 

techniques; and (f) the DSH can be integrated with other ATMs such as ramp metering to 

investigate the effects of merging control. 
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